ENERGIA
TEEKAARDI
VÄRSKENDUS -
TEEKAART 2023
Sisunäitaja

1. Proloog.. 1

2. Eesmärk ja otsustuskriteeriumid.. 2

3. Eesti energiavajadus ja selle katmise võimekus 2022-2031-2040................................. 3
 3.1 Summaarne energiavajadus ja sõsinikuheitme vähendamine.. 3
 3.2 Elekter.. 5
 3.3 Soojus ja jahutus... 6
 3.4 Transpordikütused.. 9

4. Energia salvestusvõimalused.. 11

5. Energiatõhusus ja energiasääst... 14

6. Tarbimise juhtimine.. 18

7. Taastuenergia arengupotentsiaal ja – vajadused.. 21
 7.1 Maismaa tuul.. 21
 7.2 Meretuuul.. 22
 7.3 Päike.. 23
 7.4 Biogaas.. 25
 7.5 Puidu kasutamine energeetikas.. 28

8. Energiasalve tasakaalumudel... 31

9. Elektritoomist puudutavad lahendused ja peamised soovitused otsustajatele......... 37

10. Investeeringud ja lisandväärtus... 44

LISA 1. Arvestusmetoodikate põhimõtted ja tulemuste kokkuvõtted................................. 45

LISA 2. Sisendid kasvuhoonegaaside ja kütteväärtuste arvutamiseks................................. 53

LISA 3. Olulisemad rahvamajanduse näitajad.. 55

LISA 4. Fantoomliitumiste selgitused... 56
1. Proloog

Elamisväärze elu Maal saab jätkuda ainult sel juhul, kui inimeste elustandard, käitumisharjumused ja innovaatiline majandus on võrdväärsed alustel tasakaalustatud looduse ja klaimag. Maa on 4,6 miljardit aastat vana, inimkond on suutnud kaduvväikese ajaga mõjutada planeeti sedavõrd, et hästi toimivast tasakaalust ökosüsteemist on saanud paratamatule hukule viiv allakäiguspiraal.

2022. aastal alanud sõda vajutab allakäigul gaasipedaali veelgi sügavamalt põhja.

Fred Jüssi on 2022. aastal öelnud: „Loodus ei ümbritse meid, loodus sisaldab meid – me oleme üks osa sellest keskkonnast.“ See on lihtne tõde, mida tuleb meeles pidada mistahes valikuid ja otsuseid tehes nii riigi kui ka üksikisiku tasandil.

Me vaesume Eesti riigi ja maana kiiresti ja sügavalt, kui me oma elukorraldust ja suhtumist loodusesse ei muuda. Meil on igal aastal vähem seda, mis on meie enda eksistentsi vajalik ja tähtis – vähem metsa, õhu, vett, loomi, kalu, putukaid, isetaastuvaid looduskooslusi ja muud. See vaesumisprotsess toimub järjest kiirenevas tempos ja see on palju olulisem probleem kui majanduskasvu või rahalise jõukuse kahanemine. Sest see mõjutab kõigi inimeste heaolu ja elukvaliteeti, mida on rahas raske otseselt mõõta – tervist, vaimset, emotsionaalset ja füüsilist rahulolu ning önnetunnet.

See vaesumine tuleb peatada. On vähe usutav, et senini tekitatud kahju saab tagasi pöörata ja juba tehtud kahju heastada, kuid veel on võimalik edasine halvenemine peatada.

Energeetika transformatsiooni kaudu pakub taastuvenergia teekaardi värskendus selleks olulisi teostatavaid võimalusi. Eesti ettevõtjatel on soov, valmisolek ja võime need võimalused kogukonna ja riigi kaasabil ellu viia.
2. Eesmärk ja otsustuskriteeriumid

Teekardi värskenduse eesmärk on muutunud majanduskeskkonda arvesse võttes uuendada suuniseid Eesti energiapolitiika ümberkorralduseks, et üle minna energiatõhususel ja kohalikul taastuenergial põhinevale majandusele lähema viie aasta jooksul.

Silmas tuleb pidada, et teekardis kirjeldatud taastuenergia areng on mõistlik ja teostatav, kuid sellist arengut ei toimu, kui viivitamata ei lahedata teekardi praeguses ja eelmises versioonis ning rohepoliitika komisjoni raportis osutatud kitsaskohti ega täideta esitatud soovitusi.

Teekardi 2023. aasta versiooni koostamisel on peetud silmas järgmisi eesmärke:

- tagada Eesti varustuskindlus ja energia julgeolek siseriiklike tootmis- ja salvestusvõimekustega aastaks 2035, sh katta kohalikult toodetud taastuenergiaga vähemalt siseriiklik elektri- ja soojustavajadus aastaks 2030;
- tagada keskkonnasäästlik tarbimine ja tootmine, energiatõhususe meetmed, energia kättesaadavus ja taskukohasus tarbijatele, arvestades kehtivaid regulatsioone ja turutingimusi;
- tagada regulatiivselt toetav ja pikaajaliselt stabiilne majanduskeskkond tootjatele;
- saavutada kasutatud lahenduste tulemusena vähima keskkonnamõjuga ja märkimisväärse kaaluga üldine sotsiaal-majanduslik kasu Eestile.
- eksportelektri võimsusi planeerides leida tasakaal loodusmõju, kogukonna soovide ning tehniliste ja majanduslike aspektide vahel. Sealjuures tuleb silmas pidada, et eksporttelektri tootmine võimaldab odavamalt toota elektrit koduturule.

Teekardi viimiseks teooriaist praktikasse peaks juba praegune valitsus moodustama viivitamata Majandusministeeriumi või Riigikantselei juurde energetika rakkerühma, mille liikmed ja rahastus tuleks ühiselt erasektorist ja avalikust sektorist, et sellel oleks nii raha, võimu kui ka teadmisi teekardis näidatud suundade ning soovituste praktiliseks elluviimiseks.
3. Eesti energiavajadus ja selle katmise võimekus 2022-2031-2040

3.1 Summaarne energiavajadus ja süsinikuheitme vähendamine.

Summaarne – soojusjahutus, elekter, transpordikütused – energia tarbimise langeb 32 TWh 2021 aastal ca 26 TWh-ni 2031 aastaks ning ca 22 TWh-ni 2040 aastaks (vt. joonis 1) Seda juhul kui rakenduvad ellu teekaardis kirjeldatud arengud ja muutused energiamajanduses – suur roll sellise tulemuse saavutamiseks on sealjuures energiatõhususel ja energiasäästul läbi hoonete renoveerimise.

Joonis 1. Energia tarbimise muutus, TWh

Keskkonnamõju hindamiseks on eraldi arvutatud nn statistiline heide, mis on aluseks ka riiklikule kasvuhoonegaaside inventuurile ja emissioonidega kauplemise süsteemile (ETS – emission trading system) ning oleusringi ehk elutsükli (LCA – lifecycle assessment) heide. Arvestatud on ainult energia tootmise ja kasutamisega seotud emissioone, st arvestust ei ole tehtud näiteks hoonete renoveerimisega seotud ega ka muude võimalike energiasäästu meetmete emissioonidele.
Arvestus on tehtud süihappegaasi ekvivalentides (CO₂ ekv) ning peamine alus on tonni CO₂ ekv vastava energiaallika eergeetilise väärtuse kohta. Statistilise emissiooni muutus on toodud joonisel 2 ja LCA muutus joonisel 3 Ülevaated kasutatud emissiooniühikutest – nii statistilise kui ka LCA osas – annab kässeleva aruande lisa 2.

Joonis 2. Energiasektori statistilise CO₂ ekv muutus

Joonis 3. Energiasektori elutsüklil põhise süsinikuhiitme muutus mln t CO₂ ekv

3.2 Elekter

2022. aasta on ka elektriturul välja toonud kõik senise energiapolitiika ja regulatsiooni nõrgad kohad. Eleringi ja ENTSO-E senised hinnangud elektri ja gaasi varustuskindluse kohta on osutunud valeks ning kogu Euroopat ootab sellest tulenevalt ees väga keeruline talv.

Kõrged elektrihinnad on Eestis suurendanud investeeringuid pääkesepaneelidesse, ka lähiviiud taastutelektri oksjonil said lõvisaga hinnapõrandat toetust pääkesepargid. Selle tulemusel võib oodata, et 2026. aastaks ületab pääkesepaneelide võimsus Eestis 1000 MW. Samas on nii maismaa- kui ka meretuuleparkide areng olnud enam kui tagasihoidlik, suuremaid investeeringuid maismaatuuleparkidesse tehakse Leedus ja Soomes, kus toetusmehhanisme enam ei rakendata.

Süsteemiteenuste turu loomine on jäänud tagaplaanile, kiire lahendusena üritatakse sõlmida süsteemiteenuste lepinguid olemasolevate tootjatega. Selline lahendus ei too aga turule uusi potentsiaalseid süsteemiteenuste pakkuajaid, kes suudaks pakkuda teenuseid odavamalt.

Planeeringutega seotud probleemistik on siiani lahenduseta. Riigi poolt loodud tuulealade kaart on küll positiivne samm konfliktide lahendamiseks, kuid ei lahenda regulaatseid probleeme. Fantoomliitumised takistavad endiselt reaalseid arendusi, võrkude tehnilised piirangud takistavad uute taastutelekri tootjate liitumisi.

Regionaalse elektri defitsiidi tingimustes tuleb järjest enam vaadata ka Eesti elektri ekspordi potentsiaali. Meretuuleparkide potentsiaali täielik rakendamine koos suurema salvestusmahuku ning potentsiaalse vesinikutootmisega aitab oluliselt kaasa kogu Baltimaade piirkonna elektri hinna stabiliseerimisele. Seetõttu on uuedatud teekordis näidatud Eesti elektri ekspordi potentsiaali, on suurendatud meretuuleparkide, pumphüdrojaamade ja elektrisalvestite võimsusi.
Joonis 4. Elektrienergia tootmise prognoos

3.3 Soojus ja jahutus

1. Soojuse tootmise mahu vähemamine teekardi perioodi jooksul on tingitud eelkõige hoonete renoveerimisest ning kadude vähemisest soojuse tootmisel ja edastamisel. Samuti võimaldavad investeeringud soojustrassidesse ning järjest soojenevad ilmad alandada võrguvee temperatuuri.
2. Kallinenud fossiilkütuste, eelkõige maagaasi hinnad on toonud kaasa väga suure huvi kaugküttega liitumise vastu. Eelkõige puudutab see piirkondi, kus paralleelselt kaugküttega kasutatakse hoonete kütmisel maagaasi või muid lahendusi. Täiendatud arvutustes on arvestatud kaugkütte liitumistega 200 GWh aastas. See arv on lähiaastatel kindlasti suurem, kuid hiljem liitumiste tempo langeb.

4. Fossiilsete kütuste osakaal (öli, gaas) langeb kaugküttele üleminekul, soojuspumpade kasutuselevõtul, nõudluse vähenemisel. 2022/2023. aasta kütteperioodil ja järgnevatel aastatel asendatakse maagaasi kasutamine ajutiselt põlevkiviõliga ca 1 TWh ulatuses. See toob kaasa CO₂ heitmete ajutise suurenemise, kuid oma ajutise iseloomu tõttu ei sea ohtu Eesti süsinikuheitmete vähendamise plaane pikemas perspektiivis.

5. Täiendatud prognoosis on arvestatud geotermasoolujisel põhineva soojuspumpalahendusega Narvas, mis asendab puidu ja maagaasi kasutust Balti soojuselektrijaamas.

Joonisel 5 on esitatud soojuse tootmisel kasutatavate kütuste jagunemise muutuse prognoos perioodil 2022–2040.
Soojus 2022-2040, täiendatud, GWh

Joonis 5. Soojuse tootmises kasutatavad kütused

Soovitused

Järgnevalt on toodud üldised soovitused soojusmajanduse paremaks korraldamiseks:

1. Tarbimise kompenseerimise asemel tõhusustada investeeringu toetuste kättesaadavust hoonete renoveerimiseks ja energiatõhususe parandamiseks;
2. Toetada ja käendada investeeringuid kaugküttestasside rekonstrueerimiseks ja ehitamiseks;
3. Tõhusates kaugkütte ja – jahutuse võrkudes soodustada hoonete liitumist teenustega nii vastavate toetustega kui ka liitumisprojektide menetlemisega KOV-dest;
4. Lähitulevikus võime olla gaasi- ja kaugküttekriisis, mis võib eskaleeruda muudeks kriisideks. Mõistlik oleks teadvustada kriisijuhtimise vajadust ning riigi, KOV-de ja ettevõtete tasemel selleks valmis olla.

5. Soodustada (k.a hinnaregulatsioonis) koostootmisjaamade ja katlamajade kodumaiste kütuste osakaalu suurendamist;

6. Soodustada soojusmajanduse meetmeid (olemasolevate jaamade ja vörkude laienemised, suitsugaaside kondensaatorid, lisasoojuspumbad, soojualastid, jne) ja geotermalenergia kasutamist, mille abil on võimalik vähendada (fossiilsete) kütuste kasutamist.

3.4 Transpordikutused

Käesolevat kümnendit hakkab oluliselt mõjutama transpordisektori liitmine CO₂-kauplemise süsteemi (planeeritud algus 2026), mis on osa Esmärk55 paketist. Praktikas tähendab see lisanduvat kulukomponenti, mis hakkab kütuste jaehindadesse sisse jooksma, tõstes veelgi hinda lõpp-tarbijale.
Tulenevalt ülalmainitud asjaoludest on korrigeeritud ka transpordikütuste kasutuse ja transpordi läbisõidu prognoose teekordis ning tulemused on esitatud tabelis 1 ja joonisel 6.

<table>
<thead>
<tr>
<th></th>
<th>2022</th>
<th>2031</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Söiduautod</td>
<td>8595</td>
<td>6995</td>
<td>6687</td>
</tr>
<tr>
<td>Kergeveokid</td>
<td>1573</td>
<td>1880</td>
<td>2247</td>
</tr>
<tr>
<td>Raskeveokid</td>
<td>471</td>
<td>382</td>
<td>199</td>
</tr>
<tr>
<td>Bussid, trammid</td>
<td>135</td>
<td>156</td>
<td>155</td>
</tr>
</tbody>
</table>

Tabel 1. Transpordi läbisõidu prognoos

![Transpordikütuste tarbimine Eestis, GWh](image)

Joonis 6. Transpordikütuste tarbimine kütuseliikide kaupa
4. Energia salvestusvõimalused

Energiasalvestus on kohustuslik element vähe- või mittejuhitava elektritootmise olulise määraga elektrisüsteemides, tagades ületoomise perioodil toodetud elektrineergia muutmise kasutatavaks siis, kui tarbimine ületab tootmisvõimekust või elektriinnad on väga kalli.

Energiasalvestuse rollist ja kestusest tulenevalt jaotub energiasalvestus:

- Energiasalvestus tootmise- ja tarbimise tasakaalu tagamiseks elektrisüsteemis (pikaajaline energiasalvestus, 6+ tundi) ja
- Lühiajaline energiasalvestus (kuni 6 tundi) tootjate, tarbijate või aktiivsete võrguteenuse kasutajate poolt peamiselt enda poolt toodetud elektrineergia salvestamine hinnajuhtimise eesmärgil.

Eestis elektrituruseadusesse (ELTS) on salvestuse mõiste sisse viidud ja õiguslikult defineeritud (25.03.2022 kehtima hakanud redaktssioonis) ning lisatud täiendused loovad ka eeldusi – mis ei ole aga piisavad – süsteemi ja paindlikkuseenuste turgude tekkimiseks.

Olulisemateks takistusteks Eesti salvestusturu arengule on:

1. Puudulik strateegiline visioon elektrisüsteemi arendamisel – on vaja defineerida selle eesmärgid ja salvestuse koht süsteemis (milliseid probleeme peaks salvestus lahendama);
2. Ebavõrdse konkurentsi oht teiste Balti riikide süsteemihalduritele kuuluvate akupankade poolt – see on vastuolus Euroopa Liidu regulatsiooniga (ELTS-i on vastavat sätteid sisese viidud) ning on oluline, et süsteemiteenuste turu käivitamiseks oleks need salvestid erastatud;
3. Elektri võrgutasude, taastuvenergia tasude ja aktsiisi arvestuse alused ei ole põhjendatud – st tasustamise aluseks ei ole mitte tarbitud elekter (nn kaelekter) vaid kogu energia (kaelekter ja laaditud elekter);
4. Süsteemi- ja paindlikkuseenuste turul pole käivitunud; süsteemiteenuste turu reeglid ehk osalemise tingimused on Baltikumi süsteemihaldurite poolt alles välja tõotamisel;
5. Planeerimisregulatsiooni ebamõistlik korraldus ehk salvestusprojekte ettevalmistavate tegevuste prosess peab olema kiirem.

Tehnoloogia valmisoleku taseme, senise Eesti turul rakendamise, maksumuse jm. kriteeriumite alusel võib hinnata järgnevate tehnoloogiate rakendamist Eesti energiaturul lähiaastatel realistlikuks – nende osas on küll vajalik kavandada (lisaks olemasolevatele) täiendavaid riiklikke meetmeid seadmete kiiremaks ja suuremaks mahus turule tulekuks:
Pumphüdrosalvestus (PHS) ehk vesisalvestus

See küps tehnoloogia on maailmas praegu domineeriv ja valdavalt suuremahuline salvestusviis, mis suudab olulisel määral mõjutada elektriturgu ning panustada energiavarustuse stabiilsusesse, elektrisüsteemi toimimisse, elektrihindade stabiilsusesse ja taskukohasusse, taastuvennergia osakaalu suurendamisse ja taastuvenergianinsteadungute efektiivsemasse kasutamisse.

Vajalik riigipoolne toetusmeede peaks aitama kindlustada projektide finantseerimist pankade poolt. Oluline parameerite toetusotsuse tegemisel on salvestusmaht, et tagada energia tarmimine võimalikult pika ajaperioodi jooksul.

Akupangad

Tänapäeval on liitiumionakud (LIB) kõige kõrgema tehnoloogilise valmisolekuga akutehnoloogia, mida Eestis kasutavad vähesel määral peamiselt päikeseelektri mikrotootjad. Nende kasutamist kaalutakse ka jaotusvõrgu investeerimute asendusena ülekoormatud võrgupiirkondades. Akupangad saavad perspektiivis (pärast turu tekkimist) osaleda ka süsteemiteenuste pakkumises, aga et väikesed akupangad tuleb selleks koondada, on põhjendatud integreerimisteenuste turuletuleku soodustamine.

Arendutööke andmise üks võimalus on uutes (ja renoveeritavates) hoonetes tehnilise valmisoleku tekstamine salvestite integreerimiseks, vajadusel ka vastava nõude kehtestamise kaudu – päikesepaneelid koos salvestusega peavad saama hoonete ja rajatiste loomulikuks osaks. Praegu on puudu ka teadlikkusest ja teadmistest, et hinnata akusalvestuse võimalusi, st arengut saab soodustada kompetentsikeskuste loomisega ja salvestusvõimaluste tutvustamisega.

Eesti vajadused ei pea olema kaetud ainult LiBidega, sest lähitulevikus tuleb masskasutuses arvatavasti ka teisi akulumere (nt lõivoolaku). Loodusressursside tasakaalustatud kasutamise ja riskide hajutamise seisukohalt on otstarbekas toetada erinevaid akulumere.

Mahtsoojussalvesti (vesisalvestust)

Mahtsalvestus veega on sisuliselt ainuke kasutuses olev ning lähitulevikus potentsiaalselt ka kaugküttes kasutamiseks valmis olev tehnoloogia. See aitab vähendada fossiilkütuste kasutust tiputarbimisel, aga muuta ka koostoomisjaamade töö sujuvamaks ja suurendada elektritoxinemise võimsuste kasutust. Salvesti saab toimida ka avariivehendidlana, st lekete korral saab salvestiga edukalt vörku töös hoida.

Mõne aasta perspektiivis tuleb mahtsoojussalvesteid suurematesse Eesti linnadesse (Tallinn, Tartu, Pärnu) ning mujal on potentsiaali eelkõige CHPe juures. Võimalik investeerimugootus tagaks salvesti eelismise tipukatelde renoveerimisele ja nendes fossiilkütuste (maagaas) kasutamisele.
Lisaks tuleb toetada arendusprojekte, mis on suunatud kohalike ressursside äarakasutamisele salvestusvõimaluste loomisel – näiteks Eesti Energia uurib võimalusi kaevanduskäikude ja vanade energiaplokkide kasutuselevõtiks salvestitena.

Vesinik salvestina

Vesiniku ei saa keskmises perspektiivis käsitleda elektri salvestajana, sest vesiniku tagasi elektriks muundamine ei ole otstarbekas. Siiski võib vesiniku tootmine lähitulevikus olla oluline meretuuleparkide toodangu kasutusviis juhul, kui turul (transpordis) tekib piisavalt nõudlust rohelise vesiniku järele.

Elektrisalvestus on tihedalt seotud taastuvenergia tootmismahtudega, kuid kindlaid seoseid, milliste mahtude juures kui palju salvestust lisanduma peab, ei ole võimalik kindlaks määrama – investeeringute tegemine on äriline otsus, mis on seotud suure määramatusega ja mõjutatud väga paljudest muutujatest.
5. Energiatõhusus ja energiasääst

Varasem plaanis „Eesmärk 55“ toodud 9% energiasäästust 9% energiasäästust esmakordselt on Euroopa Komisjon RePowerEu plaani kohaselt asendatud kohustusliku 13% energiasäästust eesmärgiga. Seejuures on Euroopa Komisjon ette näinud kättesaamisvõimalusi, millega juba 2022–2023 talvel vähendada energiatarbirmist 5%. sh konkreetseks elektritarbirmist 10% (tiputundidel 5%).

Euroopa Komisjon pakutud eesmärkidega kooskõla viidud Teekart nääb ette Eesti üldise energiakasutuse vähemist 32 TWh-it 2021. aastal kuni ca 26 TWh-ni 2031. aastal ja 22 TWh-ni 2040. aastal (ei sisalda salvestus- ja ülekankeandmed).

Kasvanud energiakulude hüvitamine ei vähenda siseriiklikke kulutusi energiale, seda aitab tagada energiatarbirmise vähendamine. Erinevate energiasäästumetteemate laiemaks rakendamiseks on tähtis nende olulisuse ja kasu pidev teadvustamine. Selleks on vajalik aktiivne propageerimine, selgitamine ning võimaliku kasu väljatoomine nii era-, äri- kui ka avalikule sektorile. Samuti motiveerib energiat säästlikumalt kasutama see, kui elektri-, gaasi- ja küttemüüjate väljastavatel arvetele tuua välja energiatarbirmise võrdlus sarnaste tarbijatega.

Energiakulude hüvitamine eratarbijatele võib olla lühikeses perspektiivis põhjendatud, kuid energiasäästu ka keskkonnahoiu seisukohalt on igasugune tarbimisele peale maksmine liikumine vales suunas. Sestap tuleb hüvitise maks misele seada kindel ajapiiri, maksta hüvitist ainult neile, kelle puhul see tööst on hädavajalik ning siduda hüvitise maksmine kohustusega investeerida energiatõhususse.

Kui praegu tähendab tunnipõhisel elektrienergiaturul odavama hinnaga periood suuremat taastuvenergia osakaalu hulka ja seeläbi väiksemat keskkonnamõju, siis reguleeritud ja fikseeritud hindadele minek teeb selles osas karuteene, suurendades tipukoormusi ja vajadust reguleeritavate fossiilikütusega pakutavate võimsuste järele ning tõstes
energiatootmise kulusid. Seetõttu tuleb reguleeritud ja fikseeritud elektrihinda kasutada vaid lühiajalise meetmena.

Allpool on toodud mõned kiiremad meetmed, millega talvisele perioodile vastu minna. Osa meetmetest on üldise säättu saavutamise nimel mõistlik muuta kohustuslikuks.

- Hoone keskmise temperatuuri madalamana hoidmine. Juba pelgalt 1 kraadi võrra toatemperatuuri reguleerimine allapoole vähendab vähemalt 5% kütteenergia kulusid. Oluline on piirata külm vastase tipus puudutavate ruumides.
- Sooja vee tarbimise vähendamine lühemalt duši all käies.
- Päikesest tuleva vabasoojuse parem kasutamine kütteallikana. Selleks eemaldada sügisest kevadeni päikeselist päevadel akende eest igasugused kardinad. Päikesenäitamine väärtendab ühtlasi vähendada energiakulu valgustusele.
- Suvisel ajal passiivsete jahutusmeetmete (kardinad, hoone välisvarjestus jms) kasutamine, vähendamaks primaarenergia kulu jahutusele.
- Valgustuse renoveerimine, millega on võimalik saavutada kuni 90% sääst olenevast kinnisvara või olemasolev valgustuse tühjist.
- Otseselt mittevajaliku valgustuse väljalülitamine öiseks ajaks (vaateaknad, reklaamid, terviserajad jms), valgustuse piiramine või valgustusgevuse vähendamine ja liikumisandurite kasutamine (tänavavalgustus, WC-d, koridorid jms).
-OOTEREHIMIS: olevate seadmete täielik väljalülitamine või voolumõistust eemaldamine.
- Personaalsete autosöitude asendamine ühistranspordi, ratta ja jala käimisega ning sõidujägimisega.
- Kütuseefektiivse sõidu methodite kasutamine ja sõidukiiruse vähendamine maanteedel. Kütuseefektiivseim kiirus on üldjuhul 70–80 km/h, aga lubatud sõidukiirust ületamata aitab sääste sõidustiil vähendada kütusekulu ja suurendada liiklusohutust.

Investerimist eeldavate tegevuste puhul on oluline alustada energiasäästu saavutamisel meetmetega, mille tasuvusaeg jääb alla viie aasta ning mis aitavad otseselt vähendada tarbitava energia kogust. Kui hoone vajab kapitaalset renoveerimist, siis eriti just äriv- ja kortermajad korral tuleks alustada põhjalikust auditist, mis kõik lahendused lähedal kalkuleerib ja parimad meetmed välja toob.
Järgnevad meetmed sobivad nii era- kui ka ärikinnisvarale.

- Tehnosüsteemide automatiseerimine ehk hoone- või koduautomaatika rajamine annab 10–40% tarbimiskokkohoidu. Automatiseerida tasub ventilatsiooni-, kütte- ja jahutussüsteeme.
- Hoonete energiatöhususe parandamise säästupotentsiaal energiatarbimises on kuni 50% eeldusel, et ei teki vajadust ehitada välja terviklikku tehnosüsteemi.
- Tehnosüsteemide ulatulikum renoveerimine, võttes kasutusele targent juhitavaid efektiivsemaid tehnoloogiaid ja soojustajastussüsteeme, võimaldab saavutada lisaks veel 10–40% kokkohoidu.
- Primaarenergia vahetus – minnes gaasi-, diisel- või elektrikütte pealt üle öhkurjandus- või maa soojuspumplahendusele, saavutatakse primaarenergia sääst. Lahenduse tasuvus sõltub asendatava kütuse ja elektrienergia hinnast.
- Taastuenergia tootmine hoone välispindadel või selle vahetus läheduses enda tarbimise maksimaalseks katmiseks vähendab võrgust vajaminevat energiat. Päikeseelakkreemad tasuvusajad jäävad keskmiselt 7–10 aasta (2022. aasta sügise energiahindade juures < 5 aastat) vahele ning annavad tarbijale võimaluse olla energiasöltumatum. Võrgusuunaliste tootmisvõimsuste piiratuse, kasvavate võrgutasude ja kõrgete elektrienergiahindade valguses on üha atraktiivsem ka akupankade kasutamine omatoodud energia suuremaks kasutamiseks ning elektrienergia hindade silumiseks.

Riiklike renoveerimistootestase jätkamine ja suurendamine on oluline, seejuures tuleb elamute ja kortermajade puhul toetada lisaks mahukatele renoveerimispakettidele ka üksikuid energiasäästumetmeid, et alandada barjääri investeeringute tegemisel energiatöhususse. Päikeseenergia toetustmeetmete vahendid tuleb lähtuda kõrgete elektrienergiahindade ja sellest lähtuva lühiajalise päikeseenergia tasuvuse tõttu suunata hoone energiatarbimist vähendavate lahenduste rakendamisse ja salvestustechnoloogiate toetamisse. Möistlik on ka maksusoodustuste sisseviimine energiatöhususega seotud investeeringute tegemisel.
Regulatiivse poole pealt tuleb täiendada hoonete energiatõhususe nõudeid, et uute hoonete kavandamisel ja olemasolevate renoveerimisel võetakse enam arvesse vabasoojuse kasutamist ning passiivset jahutust. Rendidava ärikinnisvara puhul tuleb rakendada minimaalseid energiaklassi nõudeid, et soodustada ärikinnisvara omanikke investeerima hoonete energiatõhususesse.

Tööstuse konkurentsivõime tõstmiseks ei piisa energiamahukate ettevõtete kohustuslikust energiaauditeerimise nõudest, tuleb toetada kogu tootmise ja ärisektori energiaauditeerimist ning energiatõhusust tõstvate investeeringute tegemist. Energiatõhusamate transportdiiside kasutamise propageerimiseks ja soodustamiseks tuleb kasutada täpselt sihitud toetusi, näiteks auto asemel rattaga või muu kergliiklusvahendiga tööle sõitmise rahaline toetamine sõltuvalt läbitavast vahemast.
6. Tarbimise juhtimine

Elektrihind Eestis on määratud Nord Pooli Baltikumi turul kujunevat hinnaga ning kõik tarbijad, kes ostavad börssinapõhist elektrit, maksavad selle hinnat põhjal. Kuna Nord Pool Spoti elektribörsil kujunet hind järgmise päeva igaks tunniks nõudluse ja pakkumise tasakaalupunktis ning tootjad pakuvad elektrit turule, arvestades tootmise muutuviku, siis järskude hüpete tõttu pakutava elektri hinnas on võimalik tarbimist paar protsenti vähendades saada hind mitu korda madalamaks. Lihtsamalt öeldes: tarbimist vähendades on võimalik osta „eelmine astme“ hinda ning saab vältida kõige järsumaid „ülemisi astmeid“.

Ühe päeva sees võivad hinnad erineda kuni 100 korda, olenevalt konkreetse tunni planeeritavast tarbimisest. See näitab, et tarbimise juhtimise potentsiaal on praegu muutunud väga suureks.

Joonisel on näidatud tüüpiline Nord Pooli pakkumisköver (x-teljel kogus MWh ning y-teljel hind EUR/MWh).

Konkreetse tunni hind kõigile turuosalistele tekib nõudluse ja pakkumise kõverate ristumispunktis. Nendel tundidel, kus ülekandevõimsuse piirangut Soomega (Estlink) ei teki, rakendub Baltikumis sama hind, mis vastaval tunnil Soome piirkonnas.

Kuna tasakaalupunkti hind rakendub kõigile osalejatele, siis langeb ka tarbimise vähendamise rakendamisel hind kõigile tarbijatele ning kasu ühiskonnale on oluliselt suurem kui vähendatud tarbimise maksumus.
Ülikalli hinnaga 17. augusti 2022 näite puhul jää kogu Baltikumi peale puudu 2 MWh, et hind oleks 4000 EUR/MWh asemel olnud ca 1000 EUR/MWh. Seega, arvestades kogu turu mahtu, oleksid tarbijad säästnud kokku 9 miljonit eurot, kui keegi oleks olnud valmis oma tarbimist vähendama 2 MWh sellisel moel, et see oleks teada olnud üks päev varem.

Tegelikkuses vähendasid tarbijad tulenevalt kõrgest hinnast oma tarbimist samal päeval lausa ca 100 MWh, aga kuna hind oli selleks hetkeks juba arvutatud, siis ei olnud sellel hinnale enam mõju.

Seega turule on vaja mehhanismi, mille abil saaks juba päev ette arvestada garanteeritud tarbimise vähendamisega nendel tundidel, kus see annab olulise efekti.

Praegune peamine probleem tarbimise juhtimisega on see, et kui tarbimise vähendamise või nihutamisega ongi võimalik hinda hüppeliselt alandada, siis see info ei jõua turuosalisteni. Tarbija näeb ainult tegelikult realiseerunud hinda ning seetõttu puudub alus tarbimist vähendada soovivale tarbijale hüvitise maksmiseks.

Ääremärkusena: ilma põhjalike andmeteta on raske hinnata, kui suur on tarbimise juhtimisest tulenev kasu ühiskonnale, aga ühe päeva naitel (30.08.2022) võiks hinnanguliselt öelda, et Baltikumis oleks võimalik tarbijatele säästa ca 10 miljonit eurot päevas, kui vähendada tarbimist 1–2% (eelduseks on hinna langus 18 tunnil ca 200 EUR/MWh võrra). KPMG tehtud mõjuanalüüs Energiasalvele on hinnaud tarbijate elektriarvete vähemist 705 miljoni euro vörre tulenevalt tarbimise/tootmise nihutamisest.

Lahendusvõimalused tarbimise juhtimise rakendamiseks

Tarbimise juhtimise süsteemi välja arendamiseks ning tööle rakendamiseks:

1. Eelkõige on tarbimise juhtimiseks vaja regulatsiooni. Vastav ülesanne on pandud konkurentsiametile, aga tänapäevaks vajaliku mehhanismi välja töötatud veel ei ole.
2. On sisendina vaja Eleringi andmelaast saada infot, kui palju tarbimise vähendamine reaalselt konkreetsel tunnil kokku hoidu tekitas ning süsteemioperaator (Elering, AST, Litgrid) kokkulepet tarbijatega või tarbimise agregaatoriga, et teatud kompensatsiooni vastu ollakse nõus oma tarbimist vähendama;
3. Süsteemioperaatorid peavad välja arvutama, kui suur on tarbimise juhtimisest tekkiv tegelik vool kõigile tarbijatele ning töötama välja vastava kompensatsioonimehhanismi;
4. Bilansihalduritel ja elektri müüjatel tuleb tuvastada ettevõtet, kellel on võimalused elektritarbimist vajaduse korral tunnipõhiselt vähendada (kontorihoone, külmhooned, ventilatsioon, tootmisióne);
5. Järgnevalt tuleb söömita tarbijatega lepingud ning määrama kompensatsiooni arvutamise alus ning miinimumpiir;
Üheks variandiks on ka minevikuandmete põhjal tarbimise vähendamisest saadava kasu hindamine ning ühtsete tariifide kehtestamine kõigile tarbimise juhtimises osalejatele (arvestamata konkreetse tunni olukorda). Mõistlikum on siiski koondada tarbimise juhtimine nendele tundidele, kus sellest on kõrge suurem kasu. Ehk sellistele tundidele, kus väike koguse vähendamine põhjustab suurima hinnalanguse.

Sellise meetodi rakendamisel klaaritakse tavaoksjonil ära 95% planeeritavatest kogustest ning lisaoksjonil konkureeriksid kõik tootjad, kes ei mahu hinnapiiri sisse, ning tarbijad, kes oleksid valmis pakkuma tarbimise vähendamist.
7. Taastuvenergia arengupotsentsiaal ja – vajadused

7.1 Maismaa tuul

Eestis töötab praegu 144 elektrituulikut koguvõimsusega 319,96 MW. Tuulepargid tootsid Eestis 2021. aastal kokku 731 GWh elektrienergiat ehk 7–8% elektrienergia lõpptarbimisest. Kui eelmise kümned alguses oli areng tormiline, siis alates 2013. aastast areng seiskus. Peamiseks põhjuseks olid riigikaitse ja piirangud, keskkonnauuringute puulikkus, ebaefektivne ja aeglane planeerimisprotsess, aga ka pikalt väldanud poliitiline debatt taastuvenergia toetuste üle, mis ei andnud arendajatele ja investoritele kindlust sektori tuleviku suhtes. Lisaks on selline ebakindlus tekitanud asjatut poleemikat ja kohati vastasseis kohalikes kogukondades.

2025. aastaks võiks maismaa potentsiaalselt lisanduda ca 600 MW ja 2028. aastaks täiendavad vähemalt 400 MW. Arvestades, et nüüdisaegsete maismaa-elektrituulikute võimsus on vähemalt 6–7 MW ning tuleviku võimsused kasvavad, on nimetatud võimsuse saavutmiseks vaja 143–167 uut tuulikut. Kui suuremates tuuleparkides võiks keskmiselt olla ca 30 tuulikupositsiooni (Totsis näiteks 38), siis oleks kokku tegu ainult kuni kuue tuulepargiga. Kui suuremaid tuuleparke rajada ei õnnestu, siis on võimalik ka väiksemate tuuleparkide rajamine.

Maakasutuse seisukohalt tuleb maismaa tuulivoimsuse lisamisel kindlasti kasutada võimalusest olemasolevate tuuleparkide võimsuse suurendamiseks alternatiivina uute maalade kasutuselevõtule uute parkide rajamiseks. Kuna maismaa tuulepargid töötavad ca 3500 tundi aastas, siis võiksid nad toota 2030. aastal 4,2 TWh ja 2040. aastal 5 TWh elektrienergiat.

Tuuleenergia arengu tagamiseks on 2022. aastal oluline jätka mitme käsil oleva teemaga, mille laiem eesmärk on pakkuda investoritele ja arendajatele ettenähtavat investeeringimiskeskonna. Tuleb jätka tuuleparkidele seatud riigikaitsete kõrguspiirangute kõrvaldamisega ning lühendada oluliselt planeeringu ja loamenetlusi –
tuulepargi projekti arendamine koos loamenetlusega ei tohi kesta rohkem kui 1–2 aastat. Samuti tuleb lahendada fantoomliitumiste küsimus (vt täpsemalt ptk 9 ja lisa 5).

Tänaseks on algatatud KOV üldplaneeringute ning KOV tuuleenergia eriplineeringutes tuvatatud tuuleenergia arenduseks sobilikud alad, kuhu on võimalik valdavalt eraomandis kinnistutele planeerida hinnanguliselt vähemalt 300 elektrituulikut. Arvestades kaasaegsete tuulikute võimaliku võimsusega teeb see kokku 2100+ MW. Eeldusel, et riigikaitselised kõrguspiirangud (vastavalt kavandatule) kaotatakse ning et arendusaladel rakendatud mõistlikke looduskaitsesili puhveralasid, mida vajadusel ka leevendatakse, kui kasutatakse kompenseerivaid meetmeid. Kõigil aladel on võimalik kitsaskohtade likvideerimisel jõuda ehitusölguseni 5 aasta jooksul, seega alustaksid kõik pargid tööd hiljemalt 2030.a.

Ülaltoodud mahule lisanduvad täiendavad tuulepargid valdades kus üldplaneeringud veel tuuleenergeetikat (piisava detailsusastmega) ei käsite või uued alad algatatavate KOV eriplineeringute raames.

7.2 Meretulul

Eesti võime toota ja eksportida meretuuleparkide elektrit loob riigile võimaluse tagada oluline osa kodumaiseks tarbimiseks vajalikku keskkonnasõbralikku elektrit, eksportitava elektri abil aga parandada kaubandusbilanssi ja toota vähemalt sisemäärade transpordile vajalikus koguses vesinikku kohapeal.

Arvestades, et meretuulepargid töötavad ca 5000 tundi aastas, on potentsiaal toota merel 2030. aastal 13,4 TWh ja 2040. aastal 17,4 TWh elektrienergiat – millega osa läheb sisemäärade tarbimiseks ning arvestatav osa eksportiks ja/või vesiniku tootmiseks. Sellega saavutaks Eesti bilansilise kliimaneutraalsuse, mille kohaselt toodetakse aasta jooksul rohkem taastuvenergiat kui tarbitakse.

Järgmisel aastakümnel (2030–2040) võiks teoreetiliselt tehniliste, regulatiivsete ja majanduslike tingimuste olemasolul lisanduda täiendavad 10 300 MW (arvestatud on
mereala planeeringu käigus lisanduvate tuulealade realiseerumist 50% ulatuses). Selline meretuuleparkide ulatuslikum rajamine Eesti rannikuvetes sõltub tehniliselt ja majanduslikult ühise merevörgu – nn Super Gridi rajamisest, riikidevaheliste võrgühenduste loomisest ning vesiniktehnoloogia arengust (nii tootmise, jaotamise kui ka kasutamise poolel).

7.3 Pääke

2022. aasta lõpuks ületab pääkeseparkide võimsus Eestis juba eeldatavalt 525 MW, 2030. aastaks on oodata võimsuse kasvu üle 1300 MW ning 2040. aastaks ca 1550 MW. Hoolimata pääkesepaneelide ja pääkeseelektrijaamade rajamishindade mõningasest kasvust viimasel ajal, on lähiaastatel näha pääkeseelektrijaamade olulist lisandumist. Seda trendi toetavad hüppeline energiahindade tõus ja vähempakkumise oksjonitulemused, kus lõviosa võimsusest on jagatud pääkeselektrile, ja teatud määral ka pakutavad investeeringutoetused. Kasv oleks kiiremgi, aga seda takistab praegu tootja võrguliitumise protsessi pikkus ja saadaolevate võrguvõimsuste nappus.

Pääkeseparkide kiire lisandumise juures on optimaalse energiatootmise spektri tekkimise seisukohalt oluline riigi tasandil silmas pidada, et taastuvenergia vähempakkumistega motiveeritaks lisaks pääkeseenergiale ka teiste taastuvenergia tüüpide – eelkõige tuuleenergia – tootmisvõimsuste teket.

Installeeritud pääkeseelektrijaamad, MW

![Graph showing the installation of solar parks over time]

Joonis 7. Pääkeseelektrijaamade võimsuste areng

Pikas perspektiivis sõltub pääkeselektri võimsuste lisandumine eelkõige elektroihindadest, võrgusuunalise tootmisvõimsuse olemasolust, elektrienergia salvestustechnoloogiate konkurentsivõimest ja energiasalvestust soosivatest võrguteenustest. Hoonepõhist
põikeseelktrijaamade nõudlust hoiavad pikaajaliselt üleval liginullenergiahoone nõuded uutele ja oluliselt rekonstrueeritavatele hoonetele.

Põikeseelktrijaamade rajamist hakkab käseseleva kümnendi teises poolas piirama põikeseelktri tootmise küllastumine ja Läänemere piirkonda suure hulga tuulikute rajamine. Seega alaneb elektrihind põikeseelistel ja tuulistetundidel ning madal elektri müügihind vähendab investeeringute atraktiivsust. Juba 2022. aasta suvel oli tunde, kus põikeseenergia toodangu osakaal kogu riiklikust tarbimisest ületas 50%.

Põikeseparkide rajamine mõjub täna positiivselt maapiirkondade võrgukadude väänenemisele, aitab hoonepõhise tootmisena hoida kokku elektrienergiakuludelt, teatud suvistelundidel avaldab müju energiahindade väänenemisele ning suurendab taastuvenergia osakaalu.

Ruumilise arengu ja optimaalse mitmeotstarbelise maakasutuse eesmärgil peab tulevikus fookus nii kuma suurtelt maapinnal paigaldatud põikeseparkidelt rohkem hoonetele paigaldavatele põikeseplaneelide – need peavad saama hoonete ja rajatiste loomuliku osaks ning tagama koos salvestitega järjest suureneva osa suvisest tipuukoormusest. Samuti saab neid kasutada lokaalselt soojust pikaajalise salvestamise energiaallikana. Nii maakasutuse kui ka võrguvõimsuse optimaalse kasutuse seisukohalt tuleb soodustada hübriiparkide (pääke + tuul + salvestus) rajamist ning seada piirangud tarbimiskohaga mitte seotud põikeseparkide võimsusele (vt peatükk 9 „Lahendid ja soovitused“).

Selleks et võimaldada põikeseenergia lisandumist, peab riik aitama kaasa tootmissuunalise võrguvõimsuse suurendamisele ja/või toetama salvestuslahenduste teket. Põikeseenergiaga seotud investeeringutoetust on soovitav jagada vaid vähem kindlustatud elanikkonna hoonetele põikesejaamade rajamiseks ning salvestuslahenduste paigaldamiseks eri sektorites. Juhul kui salvestuslahendustele jagatakse investeeringutoetust, tuleb seda rakendada koos teatud võrgusuunalise võimsuse üles ja alla reguleerimise kohustusega.

7.4 Biogaas

Biogaas on orgaanilise toorme käritusprotsessil eralduv metaanirikas gaas, mis sobib kasutamiseks energia tootmisel ka täiendava puhastamiseta. Biometaan on puhastatud ja kontsentreritud biogaas, mille metaanisisaldus on viidud maagaasiga lähedasele tasemele ning mille puhtusaste on sobilik tema kasutamiseks puhtalt või segatuna maagaasiga.

![Diagram showing the distribution of biogas sources](image)

Joonis 8. 2022. augusti seisuga toodetud biometaani toore

Kliimaneutraalsuse seisukohalt on oluline, et biogaasi/biometaani käsitletakse kasvuhooegaaside arvestuses negatiivse CO₂ ekvivalendiga heitena (2021. aasta juulist kehtima hakanud RED II direktiivi kohaselt on loomset sönnikut toodetud biometaani KHG vaikeväärtus vahemikus −80–100 gCO₂ ekv/MJ), kuna biometaani tootmisel püükakse kinni see kogus metaani ja teisi kasvuhooegaase, mis vastasel juhul – loomulikul ladestamisel looduses – otse atmosfääri paikkuksid.

Biogaasi tootmisel on oluline osa ringmajanduses. Orgaanika käritamisega ja tekkiva biogaasi väärintamisega:

- vähendatakse jäämetest tekkivaid kasvuhooegaase, eriti põllumajanduses;
- leitakse tekkivatele jäämetele väärtust loov rakendus;
Installeeritud biometaani jaamade võimsus, GWh aastas

![Bar graph showing installeeritud biometaani väärtus [%] over time]

Joonis 9. Installeeritud biometaani tootmise võimekuse kasvu prognoos Eestis

Kokku oleks sellise mahu toutmiseks optimaalne ca 20–30 biometaani tootmisjaama hajutatuna üle Eesti. Biometaani tarbimine on jagatud transpordi, soojuse ja elektri vahel, kusjuures kasutuse proportsioonid ajas muutuvad. Energiajulgeoleku seisukohalt on otstarbekas hoida biometaani strateegilise varuna Eesti Varude Keskuses ning rajada üks ca 250 MW biometaanil ja LNG-

- töstetakse loomse sönniku väärtust põllumajandusliku väetisena;
- toodetakse positiivse keskkonnajalajäljega rohekütust, võimaldades sellisel moel vähendada kogu transpordisektori kliimamõju;
- suurendatakse kohaliku kütuse tootmisega riigi energiajulgeolekut.

Biometaani tootmise kasvapotentsiaal seisneb eelkõige põllumajandusliku toorme laiemas kasutuselevõtus ning jäätmemajanduses bioloogilise jääme võimalduses väljasporteerimises, samuti gaasi edasises vääramises. Maksimaalse kasu saab biometaanist, kui kasutada toormena sönnikut, laga, toidutööstuse jäämeid (nt vadam), riknenud loomasõita (hoides nii ära märkimisväärse põllumajandusektorit kasvuhoonegaaside heite) või prügilagaasi.

Eesti Arengufond on 2015. aastal hinnanud Eesti biometaani tootmispotentsiaaliks ca 4,5 TWh. See suur arv sisaldab 80% ulatuses toorainena rohtset biomassi põllumusmaadelt, mis eri põhjustel ei pruugi olla eelistatud tooraine biometaani tootmiseks. Joonisel 9 on toodud optimaalne biogaasi tootmismahu kasv Eestis, mis vastab põllumajanduse praegusele tasemele ning midaoodsa regulatiivse keskkonna korral on võimalik realiseerida.

26
põhinev elektritootmine tipukoormuste katmiseks ning taastuvenergia tootmise ühtlustumiseks.

Soovitused ja lahendused

Biogaasi tootmise laiendamisel on teekaardi eesmärke ning energia trileemmat silmas pidades ainult positiivne mõju – väheneb keskkonnamõju, suureneb energia kättesaadavus ja energia julgeolek ning fikseeritud hindade korral on tagatud eksporditavast maagaasil sõltumatu stabiilne hind nii tarbijale kui tootjale. Alljärgnevalt on toodud soovitused biogaasi tootmise ja kasutamise laiendamise motiveerimiseks.

- Selleks et biometaani hind lahti siduda maagaasi turuhinnast, võib seada transpordiettevõtetele kohustuse tagada oma tarbimine biometaaniga. Kui näiteks ühistranspordi ettevõtetele seada selline kohustus, siis saaksid biometaani tootjad bussifirmadega tehda pikaajalisi fikseeritud hinnaga kulupõhiseid lepinguid, mis võimaldaksid biometaani tootjatel katta volatiilse turu madalseisudega kaasnevad hinnariski ning bussiettevõtetele kõrgete kütusehindade riski. Alternatiivselt võiks fikseeritud hinnaga lepinguid vahendada Transpordiamet. **Sealiuures aitaks fikseeritud hinnaga**
biometaani kasutamine ühistranspordi kulusid alandada juba saabuval sügis-talvel, sest:
- gaas (sh biogaas) on praegu kallis ja transpordijettvõtte kulud on suurenenud, mistõttu kõsikakse lepingute täitmiseks raha juurde või võetakse gaasibussid kasutusest maha. Juurde maksmiseks raha napib või tuleb see niigi keerulisel ajal millegi muu arvelt;
- juurdemaksuse asemel võiks Majandus- ja Kommunikatsiooniministeerium Transpordiameti kaudu sõlmida pikaajalised ja fikseeritud hinnaga biogaasi ostulepingud otse biogaasi tootjatega. Transpordijettvõtted saavad siis läbi selle mehanismi kogu aeg kindla hinnaga ning teenuse hind on stabiilne;
- fikseeritud hind peaks arusaadavalt olema palju odavam kui gaasi hind praegu. Sellega saaks gaasibusse kasutava ühistranspordi kulu kohe alla;
- fikseeritud hind omakorda võimaldab teha täiendavaid investeeringuid biometaani tootmise laiendamisse Eestis.

- Eesti Varude Keskuse kaudu võiks riik sõlmida ka pikaajalised fikseeritud hinnaga lepingud kodumaise biometaani ostmiseks maagaasi või LNG asemel – näiteks 0,3 TWh aastas järgmiseks 10 aastaks.

- Soodustada biojäätmeter võõriste vabal kujul ringmajandusse suunamist ja biojaamades väärimist. Selleks tuleks seada jäätmekeitjatele karmimad reeglid biojäätmeter alaldi sorteerimiseks võõristevabal kujul.

- Prioriseerida biojaamade rajamist, lubades lihtsustatud planeerimisprotsessi. Biojaamade rajamine parandab loomakasvatuste ümber asuvat keskkonda, lahendades haisuprobleemi ning pakkudes võimalust jäätmeter täiendavaks väärimiseks.

7.5 Puidu kasutamine energieetikas

Puit on oma lihtsa kättesaadavuse tõttu leidnud kasutust energieetikas ajast aega. Puidu kasutamisel energieetikas on Eestis olnud ning on ka tulevikus oluline koht – näiteks on just puiduhakke kasutamine koostootmisjäamades võimaldanud Eestil siiani täita suuremas osas taastuenergia eesmärke.

Viimastel kümnenditel Eestis ja ELis välja kujunenud puidu energieetilist kasutust korraldavad regulatsioonid ja dotatsioonid muutuvad lähiajal – Euroopa Komisjoni Teadusuuringute Keskuse 2021 raport töi välja, et praegune puidukasutus energieetikas ei ole ELis kliima- ja elurikkuse mõttes ja kogu elutsüklist arvestades õige. Seetõttu on Euroopa
Komisjon esitanud uue ettepanekute paketti rangemate kestlikkuskrитеeriumite kehtestamiseks ning tulevikus on nii elektritootmises kui ka soojusmajanduses vajalik valmis olla alternatiivsete kütusevabade tehnoloogiate laiemaks kasutuseks.

Eestis on nüüd ja edaspidi siiski igati mõistlikkasutada kohalikku madalakvaliteedilist puitu energielisel otstarbel kohalikes koostootmisjaamades. Eestis on jätkusuutlik ühtlane raiemaht 8–9 miljonit tihumetreit aastas: see tagab ühtlase toorme Eesti puidutööstusele ning sellele mahule vastavast energielise puidu kogusest (ka väga laiades piirides) piisab Eesti siseriikliku vajaduse katteks nii taastuenergia tootmise tasakaalustamiseks kui ka maagaasi osaliseks asendamiseks eenergetikas. Samas on energielise puidu kasutamine väikese energielise kasuteguriga rakendustes (elektri tootmiseks ilma soojuse tootmiseta) keskkonna koormava ja reesurssi raiskava ning sellist kasutust tuleb väljata.

Praegusel keerulisel ajal on oluline teada, et energielise puidu (sh pelletite) eksport vähendab riigi energiaindustlikku – ja see tuleb lõpetada. Piltlikult öeldes sunnib iga väljaveetud tihumeeter hakkepuitu või pelleteid kasutama täiendavat kogust maagaasi – kui Eesti kasutab maagaasi ca 4 TWh aastas, siis näiteks 2019. aastal eksportiti Eestist energielist biomassi 8,2 TWh ja samal aastal tarbitti Eesti-siseselt energielist biomassi 7,5 TWh (vt joonis 10.)

Primaarsed tahked biokütused, TWh

![Diagram](image)

Joonis 10. Tahkete biokütuste tarbimine ja eksport (ei sisalda halupuitu)

Energielise puidu eksporti lõpetamisel on lisaks julgeoleku suurenemisele ka positiivne majanduslik mõju: Eesti jätab siis tasuta eksportimata puiduga seotud CO₂ määra, millel on otsene rahaline väärus seda puitu siseriiklikult energieliselts kasutades.

Energiamajanduse kontekstis on metsal ja teistel looduslikel kooslustel nii nüüd kui ka tulevikus teinegi oluline roll – süsiniku sidumine. Energietikaga seotud fossiilsete kütuste
põletamisel (sh transpordis) tekkiva CO₂ kompenseerimiseks vajalik looduslik süsiniku sidumise võimekus Eestis on viimase kümnendi jooksul mitu korda vähenedud ja jõudis 2020. aastal intensiivse metsarajame ning intensiivpõllunduse tõttu süsiniku sidumise asemel süsinikku emiteerivasse olukorda (vt joonis 11).

LULUCF emissioonid

![Graph showing LULUCF emissions from 2000 to 2020](image)

Joonis 11. Loodusliku süsiniku sidumise muutus, mln t CO₂ ekv

Fossiilsete kütuste asendamine (eriti transpordisektoris) võtab aega ning mingi osa fossiilsetest kütustest jääb ilmset kasutusse ka aastatel 2030–2040. Sellest tuleneva süsinikuhaitme kompenseerimiseks on vajalik suurentada Eestis loodusliku süsiniku sidumise võimekust vähemalt 2,5 miljoni tonnini aastaks 2031 ja 3 miljoni tonnini aastaks 2040. Eestil loodusel oli sellisel tasemel süsiniku sidumise võimekus veel 7–8 aastat tagasi olemas ning see tuleb taastada.
8. Energiasalve tasakaalumudel

AS Energiasalve poolt loodud tasakaalumudel on vähe- või mittejuhitava elektritootmise olulise määraga elektrisüsteemis elektrienergia tootmise ja tarbimise iga hetke tasakaalu kirjeldav matemaatiline mudel, mille eesmärgiks on Eestis soodsaimat elektrihinda, kõrget energiajulgeoleku taset ning keskkonnasäästlikku energiavarustust tagavate elektritootmise, -salvestuse ja -tarbimise koosluste leidmine. Energiasalve tasakaalumudeli peamiseks eelduseks on riikide tootmise ja tarbimise tasakaalu tagamine siseriiklike vahenditega või sellise tasakaalu tagamine riikide vahel sõlmitavate lepinguliste kokkulepete alusel, rahvusvahelise energiakaubandusele piiranguid seadmata.

Energiasalve tasakaalumudel (ESTM) on töövahend, millega analüüsitakse juhitamata elektritootmist poolt Eesti elektrisüsteemi toimimisele esitatavaid väljakutseid. Selle kasutamine võimaldab leida suurt varustuskindlust tagavaid, keskkonnasäästlikke ja Eesti tarbijatele soodsaid lahendusi. ESTM arvutab iga vaadeldava aasta igale tunnile energiabilansi (tootmisest lahusatud tarbimine), ebabilansi tulemusi visualiseerib ESTM "kikiipusuna" (vt joonis 12), millele on kantud vaadeldava aasta iga tunni tootmise-tarbimise saldo järjestanuna väiksemast suuremani:

![Diagram showing energy surplus and deficit conditions](image)

Joonis 12 Energiasalve tasakaalumudel

ESTM võimaldab leida, kui suurel osal ajast katas valdavalt juhitamatul tootmisel (päike, tuul) põhinevas energiastuteemis tootmine tarbimisvajadusest (nii energia kui ka ajalises vaates). Joonis 13 visualiseerib, kui palju on võimalik Eestis defitsiitundu (tunde, mil elektritootmine ei kata tarbimist) vähendada, installeerides täiendavaid tuulegeneraatoreid.
Joonis 13. Defitsiidi tundide vähemise seos installeeritud tuulikute kogusega

Käesoleva analüüsi esimeses iteratsioonis analüüsid ESTMi abil kolme stsenaariumit, igal stsenaariumil lisati süsteemi eri kogus juhitamatut energiat, baasjaamade parameetrid jäid samaks. Analüüsi teises iteratsioonis lisati süsteemi igale stsenaariumile defitsiidi katkeks praegu teadaolevalt arendatavad salvestid. Kolmandas iteratsioonis lisati lisaks teadaolevatele salvestitele Paldiski vesisalvestile veel täiendav salvestusmaht 15GWh* ja biogaasil** toimiv tipujaam võimsusega 300MW. Analüüsi koondtulemused on kantud tabelisse (vt tabel 2). Punase tooniga on esitatud iga stsenaariumi ebabilanss (üle- või puudujääk). Iteratsioonides 2 ja 3 on roheliste toonidega on esitatud salvestite ja/või tipujaamade poolt kaetav ebabilanss.

*Täiendav reservuur on võimalik teha Paldiski vesisalvestile tempoga ca 2GWh lisanduvat salvestusmahtu aastas.

**Biogaasi maksimaalne toodang aastas on hetke parima teadmise kohaselt 0,3TWh.
<table>
<thead>
<tr>
<th>Iteratsioon nr</th>
<th>Sisenäärium 1</th>
<th>Sisenäärium 2</th>
<th>Sisenäärium 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarbimine 9 TWh/a</td>
<td>Biogas</td>
<td>Biogas</td>
<td>Biogas</td>
</tr>
<tr>
<td>Täna teadaolevalt planeerimisel olevate salvestitega</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15GWh reservuaar ja tipujaamana 300MW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2. Kolme sisenääriumi koondustulemus

<table>
<thead>
<tr>
<th></th>
<th>Import</th>
<th>Export</th>
<th>Import</th>
<th>Export</th>
<th>Import</th>
<th>Export</th>
<th>Import</th>
<th>Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Kirjeldus

Töötsoon

Streenäärium 1

- CHP 200MW
- Puiki maail 700MW
- Tuul merel 700MW

Streenäärium 2

- CHP 200MW
- Puiki maail 700MW
- Tuul merel 1100MW

Streenäärium 3

- CHP 200MW
- Puiki maail 1300MW
- Tuul merel 2700MW
Tabel 2 on kirjeldatud ka erinevad töötsoonid (kolmas tulp), mille olulisemad aspektid on esitatud tabelis 3:

<table>
<thead>
<tr>
<th>Töötsoon</th>
<th>Kirjeldus</th>
</tr>
</thead>
</table>
| Eksport+ | 1. Olemasolevad välisühendused ei võimalda sellises mahus eksporti
2. Uusi välisühendusi lisamata tuleb:
 a. tootedud energia salvestada või
 b. tootmist piirata |
| Max eksport | 1. Hinnanguline olemaasolevate välisühenduste võime elektrienergiat eksportida (eeldusel, et riikidevahelise süsteemiteenust ja elektriratsioni osa on tühine)
 a. Tuleviku silmas pidades tuleb siiski eeldada, et süsteemiteenused reserveerivad ülekandevöömsustest teatud osa, mis vähendab olemaasolevate välisühenduste võimekust elektrienergiat päev-ette turul müüa. |
 a. Tundidel, kus naabritel on enda energiavajadus kaetud ja neil puudub vajadus importida, ei ole meil ka ülejäävat energiat võimalik eksportida, seega tuleb see meil salvestada või maha piirata (sarnaselt stsenariariumiga „Eksport+“) |
| Import | 1. Selles tsoonis jääb Eestis energiat puudu ja selle katmiseks tuleb:
 a. kasutada varem (üle toodetud energiast) salvestatud energiat
 b. käivitada tipupaam
 c. energiat importida (sealjuures tuleb silmas pidada, et ilmaloode korreleerumise tõttu on tõenäoliselt juhitamat energiat puudu ka Eesti naabritel) |
| Max import | 1. Maksimaalne olemaasolevate välisühenduste võime elektrienergiat importida
2. Tuleviku tuleb silmas pidada, et süsteemiteenused reserveerivad sellest võimsusest osa, see omakorda vähendab Eesti vöömet päev-ette turult elektrit importida.
3. Sellest piirist allpool ei ole välisühenduste puudumise tõttu võimalik puuduolevat energiat importida |

Tabel 3. Tabeli 2 töötsoonide selgitus

Täielik energiasõltumatus tähendaks võimet katta riigi tarbimisvajadus iga ajahtel. Köige kriitilisemad on päevad, kus tarbimine on pika ajavahemiku jooksul suur, kuid samal ajal juhuslikku tootmist piisavalt ei ole (pime, tuulevaikne ja külm talveperiood). Nendeks
hetkedeks tuleb sõltumatu tagamiseks süsteemis kavandada juhitavad võimsused (kiiresti käivitatavad tipujaamad ja/või suure salvestusmahuga salvestid). Arvestades teoreetilist riski, et Eesti naabrid meid tootmisvõimsuste puudumise tõttu köige keerulisemal hetkel toetada ei saa (juhitamatut tootmist pole ning juhitavad võimsused on katmas oma tipukoormust), tuleks täieliku energiasõltumatu tagamiseks planeerida vastavad võimsused siseriiklikult või vajalikud võimsused naabrite juures siduvate kokkulepetega tagada. Kokkulepete varianti soovitame üksnes juhul kui sellised võimsused rajatakse seal soodsamalt kui Eestis.

Täieliku energiasõltumatuuse saavutamiseks tuleks süsteemi planeerida vähemalt tipukoormuse jagu juhitavaid võimsusi. Mida rohkem on süsteemis juhitamatut tootmist seda vähem töötunde jääb köige kriitilisemateks hetkedeks vajalikule juhitavale jaamale (salvesti või tipujaam), mis vähendab omakorda selliste investeeringute atraktiivsust.

ESTM abil on võimalik arvutada kui suure osa puudujäägist suudaksime katta erineva installeeritud salvestusmahu ja võimsuse korral. Tulemused varem kirjeldatud stsenaariumitele on esitatud tabelis 4.

<table>
<thead>
<tr>
<th>Stsenaarium 1</th>
<th>Stsenaarium 2</th>
<th>Stsenaarium 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1=520 MW</td>
<td>P1=520 MW</td>
<td>P1=520 MW</td>
</tr>
<tr>
<td>P2=1000 MW</td>
<td>P2=1000 MW</td>
<td>P2=1000 MW</td>
</tr>
<tr>
<td>E=0...50 GWh</td>
<td>E=0...50 GWh</td>
<td>E=0...50 GWh</td>
</tr>
</tbody>
</table>

Tabel 4. Salvestite poolt kaetav defitsiit

Tabel 4 näitab, et 10-20 GWh salvestitega on võimalik katta arvestatav osa puudujääväst energiast. Ülejäänud defitsiit tuleks katta pikaajalise salvestuse või tipujaamade toel. Siinjuures tuleb arvestada, et suure taastuvenergia mahuga süsteemis on tipujaamade käivitamine harv, kuid see-eest peavad tipujaamad olema piisavalt võimsad, et katta juhitamatu energiaga puudujääk köige suurema tarbimisega perioodil.

Tipujaamade dimensioneerimisel tuleks arvestada ka riski, et energiadefitsiit võib kesta pikemalt kui käesolevas mudelis esitatud referentsaasta. Samuti võib tekkida olukordi, kus salvesteid on mõistlik hoida laetuna – puhkudeks, kus lähiajal võib tipujaamade võimsust

35
puudu jääda. See tähendaks, et tipujaamadele jääks nendel tundidel rohkem tööd ja sellest tulenevalt võib salvestite talitlus optimeeritud süsteemis pisut väheneda.

Kuna 2031. aastaks vähenevad Eestis juhitavad võimsused oluliselt, siis tuleb energiasüsteemi planeerides kokku leppida, milline on eestimaalaste ootus energiajulgeolekule, elektrihiinnale ja elektritootmise keskkonnamõjule. Kuna juhitavad elektritootmisvõimsusi muutuvkuludel põhineva elektrituru vastu finantseerida pole võimalik, on vaja planeerida juhitavate võimsuste ehitamine koos finantsraamistiku kehtestamisega.
9. Elektritootmist puudutavad lahendused ja peamised soovitused otsustajatele

Alljärgnevalt toodud soovitused osaliselt kattuvad Teekaardi põhidokumendis tooduga ning samuti valitsuse rohepoliitika komisjoni soovitustega. Korduva kirjapanemise põhjuseks on asiavõla, et vastavate soovituste rakendamisega ei ole siiani alustatud ning seetõttu ei ole võimalik taastuenergia areng teekaardis näidatud viisil. Lisaks on toodud tänasest majanduspoliitilisest olukorrast tingitud uued vajadused ja nende lahendused.

Soovitust loetelu ei ole täielik, kuid katab olulisimad kitsaskohad ning toob välja lahendusvõimalused nende kõrvaldamiseks

Lahendusvõimalused elektri osas üldiselt

1. Positiivse arenguna on vastu võetud talumistasu kehtestamise regulatsioon tuuleparkidele. Selle toimimise mõju tuleb hinnata 5 aasta pärast.
2. Kuigi enamus planeerimisprotsessese puudutavaid soovitusi eelmisest teekaardist on siiani pidurdatud ning vajavad kiiret lahendust, on tänaseks positiivse arenguna läbi viidud taastuenergia arenduse kiirenduse audit ning auditi tulemusena tehtavad ettepanekud seaduse – ja regulatsioonimuudatuste kohta on formuleerimisel. Ettepanekud tuleb välja töötada ettevõtjate ja avaliku sektori koostöös, sh. tuleb kokku leppida riiklikelt oluliste taastuenergia arenduste loetelu.
5. Eleeringile tuleb anda selge riiklik suunis luua mehhanism, mis võimaldaks teha vajalikud investeeringud võrgu tugevdamise, et võimaldada suuremahulist meretuuleparkide, majasama tuuleparkide, salvestite ja hüüridparkide liitumist vastavalt Teekaardis toodud mahtude prognoosile.
7. Strateegilise elektritootmise reservi rajamise ja hoidmise regulatsiooni vajadus on muutunud viimase aasta jooksul ilmselgeks, samas ei ole ses osas riigi poolt seni mingeid samme ette võetud.

Lahendusvõimalused tuule – ja päikese energeetika osas

Alljärgnevalt on toodud taastuvenergia arengut puudutavad detailsemad soovitused. Selguse mõttes on soovitused grupeeritud nelja teemavaldkonda – fantoomliitumised, planeeringud, vähempakkumised ja bilansierimine.

1. Fantoomliitumised elektrivörgus

Võrguressursi puudujääk on suures osas kunstlik – tekitatud liitumistega spekuleerijate poolt - ning seetõttu on tihtipeal eutele reaalsele tootjale liitumiskulu taastuvenergeetika arengut väljastavat (vt. Lisa 5). Ettepanekud kitsaskohalikvideerimiseks on järgnevad:

1.1. Teekaart toetab MKM-Eleringi kavatsust, millega planeeritakse kasutamata võrgubroneeringute osas kehtestada tasud. Teekaardi koostajatel on selles osas järgnevad ettepanekud, mis meie hinnangul võimaldaksid vabastada kasutamata võrgubroneerunguid:

1.1.1. Kõikidele tootmisuunalistele liitumislepingu juba sõlminud turuosalistele rakendatakse püsitasu määras 38 000 MVA/ EUR/aastas kasutamata liitumislepingu järgset tootmisvöömsust. Kui tootmisseedest ei ole rajatud või tootmisseade on rajatud vähem kui 50% mahus, tasuta teede kasutamata tootmisvöömsus.

1.1.2. Punktis 1.1.1. tasuta rakendatakse ka tootmisuunaliste väreungõs mün sõlminud turuosalistele kasutamata väreungiõs mün jõrgse tootmisvöömsusele, kui väreungõs mün jõrgset tootmisvöömsust kasutatakse liitumispunktis aastas keskmiselt vähem kui 5%. Liitumispunktis kasutus hinnatakse käsusele kalendriaasta osas jaanuaris 2023 ning tasuta maksuse kohustuse korral tuleb tasuta maksu hiljemalt 01.04.2023.

1.1.3. Kõikidele uutele tootmisuunalistele liitumistele kehtestatakse ühekordne deposiit 50 000 EUR/MVA, mis tuleb turuosalisel tasuda liitumislepingu sõlmimisega samaaegselt. Depositi on võimalik tasaarvestada liitumislepingu

1 Peetakse silmas olukorda, kus primaarenergiallikat ei ole rajatud või on sellest rajatud vähem kui 50% mahus.
järgsete tasudega ning deposiidi jääk tagastatakse, kui tootmisseade koos primaarenergiallikaga on rajatud 3 aasta jooksul liitumislepingu sõlmimisest. Tähtaega on võimalik pikendada 6 kuud, eeldusel, et 50% investeerimustootmisadme (koos primaarenergiallikaga) rajamiseks on selleks hetkeks tehtud.

1.1.4 Nimetatud tasusid/deposiiti ei rakendata kodumajapidamiste jt. väikelootjate alla 15 kW seadmetele.

1.3. Liitumismenetlusi puudutav info tuleb teha avalikus - nii Eleringi kui Elektrilevi ja teiste jaotusvõrguettevõtjate võrkudes, alajaamade kaupa erinevatel pingeasmetel (Vt. ka lisas 5, punkt b).

1.4. Liitumispakkumiste aluseks olevates võrgu modelleerimistes mitte summeerida põikes- ja tuuleparkide tootmismaha vaid rakendada dünamiilist liitumist. Sama füüsiline võrguressurssi saab kasutada nii põikes- kui ka tuuleparki jaoks samaaegselt.

Selgitus: Tuule ja põikesparpid toodavad elektrienergiat 98-99% juhtudest erinevatel aegadel. Kui selline olukord tekkib, on see lahendatav tehniliste piirangutega (alla koormamisega nendel tundidel kui toodang peaks kattuma) ning võrgu läbilaskevõimet ei ole vajalik suurendada. Tulenevalt saab piirkondades, kus vabas ressurss on „täis“ põikesparkide tõttu, juurde liita tuuleparke ilma võrgutugevusdi tegemata või tehes tugevduvi vääksemas mahus.

1.5. Suunata riigi poolt võrgu läbilaskevõime suurendamisse oluliselt rohkem vahendeid (sh võrguettevõtjate omavahendeid ning EL vahendid) eelistades selliseid taastuvenergia tootmisadmeid, mis kasutavad liitumisressursi enam ja aastaringest. Samuti tuleb eelistada hajutatult üle riigi paiknevaid ja tarbijate lähemal paiknevaid tootmisi ning neid, mille tasandatud elektritootmiskulu (LCOE) on madalam ning mis alustavad elektri tootmist hiljemalt 2030. aastal.

1.6. Anda poliitiline suunis võrguettevõtjatele pidevalt jälgida ja vajadusel ametiasutusi informeerida, kui „fantoomliitumiste“ probleem peaks tekkima mõne
muu võtte kasutamisega (nt tarbibisuuunaliste liitumiste ulatusliku kasvu ja tootmisuuunalisteks liitumisteks ümberkonverteerimise tõttu).

1.7. Piirata fantoomliitumiste probleemi lahendamiseni piirkonniti liitumiste väljastamist muudele tootmis- ja tehnoloogiatele kui tuulepargi ja tuule- ja päikese hübridipargi kui neis piirkondades on üldplaneeringu või eriplaneeringu I etapi tulemuste järgi tuulepargi rajamise võimalus.

Selgituseks: maismaal on vähe neid piirkondi, kus üldse on võimalik tuuleparki rajada ning neid piirkondi tuleb seetõttu eelistada just nimelt tuule- ja hübridiparkide arendustena, sh võrguressuri mõttes.

2. Planeeringud ja loamenetlus

Planeeringud ja loamenetlus on Eestis põhjendamatult aeglased, jäädes naaberriikidest maha praeguseks juba aastatega. Alljärgnevalt ettepanekud protsessi parendamiseks.

2.1. Tagada ametkondade tõhus ja kiire koostöö lubade, koostöolastuste, planeeringute ja keskkonnamõjude hindamise osas koos maksimaalsete lubatud ajapiiride kehtestamisega menetlustöötingutele, soovitavalt maksimaalselt 2 aastat tuule-või päikesevargi ehitusõiguse saamiseks, sh KOV eriplaneeringu raames.

2.3. Siduda väljamaksed kohalike omavalitsuste tasandusfondist taastuvenergia arendusalade kajastamisega üldplaneeringutes ning teema- ja eriplaneeringutes majanduslikult mõistlikul tingimustel ning kooskõlas riiklike juhinditega.

2.4. Kiirendada üldplaneeringute järelevalvemenetlust Rahandusministeeriumi poolt.

Selgituseks: Teadaolevalt venivad RAM ÜP järelevalvete menetlused 6 kuud ja enam, ehkki kõik ÜPd mis sisaldavad tuuleenergetika alasid tuleks järelevalves otsustada kiirelt, näiteks 30 päeva jooksul.

2.6. Kehtestada ühtsed alused KOVidele, mis võimaldavad päikeseparke rajada põllumaale, sh. väärtuslikule põllumaale, tingimusel, et valdav osa (n. 80-90%) põllumaa massiivist jääaks jätikuvalt kasutusse põllumajandustootmiseks.

2.7. Seada Kaitseministeeriumile kohustus anda siduvad kooskõlastused radari kompensatsioonialadesse jäävatele tuuleparkide ehituslubadele ja planeeringutele nii maismaal kui ka meres peale seda kui sensorite hankelepingud on sõlmitud, ent enne radarite lõplikkun installeerimist ja tööle hakkamist.

Selgituseks: Muudatus võimaldab tuuleparkide valmistat tuua ca 1+ aasta vörre varajasemaks, sest projekteerimise ja teede, platside, vundamentide, alajaamade ehitamise ning tuulikute püstitamisega saab alustada juba enne uute radarite paigaldamist. Tuulikute tööle panemine toimiks peale radarite tööle hakkamist vastavalt hankelepingutes sättestatud tähtaegadele.

2.8. Säätestada seaduses koormata mereala suhtes baasuurungud, mille loetelu on lõplik ja piiritletud KMH programmiga. Uuringute tulemused kinnitada lõplikult KMH ekspertrühma poolt ning uuringute tulemusel vastu võetavad otsused teha siduvaks kõigile osapooltele.

Selgituseks: Meretuuleparkide hoonetuslubade menetlust on mitme aasta vörre pikendanud erinevate ametnike soov täiendavalt mingeid teemasid analüüsida, KMH ekspertrühmas peab olema vajalik ekspertiis ja nende otsus peaks olema lõplik.
2.9. Luua meretuuleparkidele loamenetluses kompleksiluba ja tagada lubade paralleelse menetlusprotsess.

2.10. Tasakaalustada keskkonnakaitsetekee ning taastuvenergia arendusvajadustest tulenevaid vastuolusid. Sealhulgas määrata looduskaitselised piirangud (puhveralad) üksnes KOV detailplaneeringu ja KSH etapis, tuginedes viimastele andmetele ning teaduspõhisusele. Seega mitte piirata perspektiivsete taastuvenergia alade valikut juba KOV üldplaneeringus ning KOV eriplaneeringu I etappides.

Laiendada keskkonnaekspertide ringi, et välistada olukord, kus täna on hinnangute andmine piiratud ekspertidega, kes kuuluvad erialaorganisatsioonidesse, mis ei ole taastuvenergia arenduste suhtes erapooluted, kuna nende põhikirjaline eesmärk on rangelt looduskaitseline.

2.11. Merealal kõrgusiirangu e kaotamine tuuleparkidele nõuab otsust uue aktiivradari soetamiseks juba lähikuudel. Selgitus: Kaitseministeerium (KaMin) on seisukohal, et kaasaaegsete tuulikute rajamine merel on realiseeritav vaid juhul, kui riigikaitselised kõrgusiirangud kompensatsioonimeetmete rakendamise tulemusena leevenevad. Kuni kompensatsioonimeetmete realiseerumiseni jäävad kehtima elektrituulikutele kõrgusepiirangud ning selles tulenevalt lükkub ka edasi meretuuleparkide ehitamisega alustamine.

3. Riiklikud taastuvenergia vähempakkumised

3.3. Kaotada vähempakkumisel tootmisseadme asukohapõhisuse nõue ehk vähempakkumisel osaleval turuosalisel on võimalik valida, millise tootmisseadmega ta vähempakkumise elektrienergia tootmise pakkumise tingimused täidab. Arusaadavalt peab tootmisseade asuma Eestis.
3.4. Alternatiivina võiks loobuda vähempakkumistem tehnoloogianeutraalsusest ning korraldada erinvatele tehnoloogiatele eraldi väiksemas mahus pakkumised, tagades sealjuures igal vähempakkumisel pakkujate rohkus ja konkurents.

4. Bilansienergia hind

Tõhustada regulatsiooni ja riikliku järelvalvet, mis tagaks bilansienergia turul õiglase hinnataseme.

Selgituseks: Monopoolsest olukorrast tingituna on avatud tarne lepingute tasu viimase aastaga kümnendkordunud tasemee u. 10 EUR/MWh. Selline hind kätkeb olulist riski taastuvenergia tootjatele juhul, kui elektri bõrshind on madalal (avatud tarne tasu võib moodustada seega nt 50% elektrimüügi käibest). Arvestada tuleb, et tundidel mil päikesepargid ja tuulepargid toodavad, ongi hind üldjuhul keskmisest bõrshinnast oluliselt madalamal.
10. Investeeringud ja lisandväärtes

Saavutamaks soovitud tasakaalu keskkonnamõju vähendamise, energiajugeoleku ja varustuskindluse tagamise ning lisandväärtese optimaalse suuruse vahel, on teekaudis kirjeldatud tegevusteks vajalikke investeeringuid nii energiatõhususse kui taastuvenergia tootmistesse. Teekardi tegevuste realiseerumiseks vajalike investeeringute prognoositavad maksumused praeguste teadmiste ja 2021. aasta hindade põhjal on toodud tabelis 1.

<table>
<thead>
<tr>
<th></th>
<th>2022-2025</th>
<th>2026-2030</th>
<th>2031-2035</th>
<th>2036-2040</th>
<th>KOKKU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrimajandus</td>
<td>2 982</td>
<td>3 896</td>
<td>1 261</td>
<td>335</td>
<td>8 475</td>
</tr>
<tr>
<td>sh päikesepargid</td>
<td>183</td>
<td>320</td>
<td>79</td>
<td>62</td>
<td>664</td>
</tr>
<tr>
<td>meretuulepargid</td>
<td>2 022</td>
<td>2 390</td>
<td>838</td>
<td>0</td>
<td>5 251</td>
</tr>
<tr>
<td>maismaatuulepargid</td>
<td>271</td>
<td>706</td>
<td>44</td>
<td>32</td>
<td>1 054</td>
</tr>
<tr>
<td>muud (sh PHEJ)</td>
<td>505</td>
<td>479</td>
<td>301</td>
<td>241</td>
<td>1 526</td>
</tr>
<tr>
<td>Soojusmajandus</td>
<td>1 711</td>
<td>2 814</td>
<td>3 355</td>
<td>3 455</td>
<td>11 335</td>
</tr>
<tr>
<td>sh soojuse tootmine</td>
<td>146</td>
<td>118</td>
<td>140</td>
<td>76</td>
<td>480</td>
</tr>
<tr>
<td>hoonete renoveerimine</td>
<td>1 565</td>
<td>2 696</td>
<td>3 215</td>
<td>3 379</td>
<td>10 854</td>
</tr>
<tr>
<td>Kütuse tootmine</td>
<td>194</td>
<td>206</td>
<td>33</td>
<td>18</td>
<td>450</td>
</tr>
<tr>
<td>sh biometaan</td>
<td>175</td>
<td>175</td>
<td>0</td>
<td>0</td>
<td>351</td>
</tr>
<tr>
<td>vesinik</td>
<td>18</td>
<td>30</td>
<td>33</td>
<td>18</td>
<td>99</td>
</tr>
<tr>
<td>KOKKU</td>
<td>4 887</td>
<td>6 916</td>
<td>4 649</td>
<td>3 808</td>
<td>20 260</td>
</tr>
</tbody>
</table>

Tabel 1. Olulisimad investeeringud aastate lõikes (mln eur)

Lisandväärtes on rahvamajanduse arv epidemiises statistiline näitaja, mis väljendab toodangut rahalises väärteses (sh oma tarbeks toodetud toodang, lõpetama- ja valmistoolangu varude muutus), millest on maha lahutatud toodangu valmistamiskulud (v.a personalikulud, kulujuf ning netootoomismaksud). Lisandväärtes leitakse seega lähtuvalt tootmisprotsessist.

Lisandväärstust kui suurust kasutatakse eelkõige rahvamajanduse või tegevusalade arengu jälgimiseks ning riikide või piirkondade majanduste võrdlemiseks. Reaalväärstuses on lisandväärtes kokku ca 17% kõrgem kui 2021. aastal eelkõige elektritootmise, aga ka vesiniku ja biometaani tootmise kasvust tingituna. Energiavaldkonna kasv ületab Eesti majanduskasvus tervikuna ning valdkonna osakaal riigi lisandväärteses mönevörra kasvab.

Tegevuste tulemusena saavutatav arvestuslik lisandväärte 2031. aastal on 2,9 miljardit eurot ja 2040. aastal 3,7 miljardit eurot, lisandväärtes MWh kohta on vastavalt 85 ja 101 eurot.
LISA 1. Arvestusmetoodikate põhimõtted ja tulemuste kokkuvõttes

1. Lisandväärtuse arvutamine

Metoodika

Lisandväärtus on rahvamajanduse arvepärimises statistiline näitaja, mis väljendab toodangut rahalises väärtuses (miinus subsideumid), millest on maha lahutatud vahetarvimine ehk toodangu valmistamiskulud, v.a personalikulud, kulut ning tootmismaksud.

Lisandväärtus on suurus, mis on eelkõige kasutatatav rahvamajanduse või tegevusalade arengu jälgimiseks ning riikide või piirkondade majanduste võrdlemiseks.

Käesolevas projektis on energiamajanduse lisandväärtus leitud kolme komponendi põhjal.

<table>
<thead>
<tr>
<th>Otsene lisandväärtus</th>
<th>Leitakse otsene, konkreetse toote tootmisega tekkiv lisandväärtus. Selleks on mudelis projektteenitud energia ja kütuste tootmise protsessid (tootmismahud, tulud, kulud). Lisandväärtus on arvutatud tööjõukulude, kulumi, netoototmismaksude ja õrikulumi summana. Lisandväärtuse sisse kuulub ka lubatud heitkoguse ühikute ostmiseks tehtud kulud (sarnaselt tootmismaksudega).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaudne lisandväärtus</td>
<td>Kaudne lisandväärtus tekib tootmisprotsessiga seotud vahetarvimise kaudu. Eelduse kohaselt kasvab (kahaneb) vaadeldava toote tootmismahu kasvades (kahaneades) proportsionaalselt ka vahetarvimine ehk nende toodete ja teenuste tarbimine, mida kasutatakse analüüsitava toote tootmiseks. Kaudse lisandväärtuse leidmiseks on kasutatud rahvamajanduse sisend-väljundtabelitel põhinevat metoodikut, viimane näitab seoseid eri tegevusalade vahel ning lisandväärtuse tekit.</td>
</tr>
<tr>
<td>Kaasnev (induteeritud) lisandväärtus</td>
<td>Kaasnev lisandväärtus tekib lõpptarvimise muutuse kaudu, mille põhjuseks on muutused otseses ja kaudses tootmises ning nendega kaasnev sissetulekutulude kasv. Kaasneval lisandväärtuse mõõtmisel on arvesse võetud nii kodumajapidamiste (töötasude muutus), avaliku sektori...</td>
</tr>
</tbody>
</table>
(maksutulude muutus) kui ka ettevõtete (investeeringutegevus)
lööptarbimise muutuse mõju.
Ka kaudse lisandväärtuse leidmiseks kasutati rahvamajanduse
sisend-väljundtabelitel põhinevat metoodikat ja sellest tuletud
lööptarbimise struktuuri.

Lisandväärtus on seega seotud vastava aasta tootmismahtudega, võttes arvesse
asjakohase energiakandja hindade prognoose.

Sisend-väljundraamistikul põhineva meetodi abil on võimalik arvesse võtta keerulisi
seoseid erinevate tegevusalade vahel (tarne- ja tarbimisahelaid) ning lisandväärtuse ja
lööptarbimise struktuuri, mistõttu võimaldab see hinnata muutuste eeldatavat mõju kogu
majandust läbivalt (otsesest, kaudset ja kaasnevat mõju, importi).

Järgnevas tabelis on toodud valitud tegevusalade lisandväärtuse koefitsiendid, mis
sisaldavad nii otsest kui ka kaudset lisandväärtust. Koefitsient näitab, mitu eurot
lisandväärtust tekib, kui vastava tegevusala toodet toodetakse (müüakse) 1 euro väärtuses.

<table>
<thead>
<tr>
<th>Tegevusala</th>
<th>Koefitsient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biokütused – puiduhake</td>
<td>0,751</td>
</tr>
<tr>
<td>Biokütused – biometaan</td>
<td>0,540</td>
</tr>
<tr>
<td>Maagaas</td>
<td>0,266</td>
</tr>
<tr>
<td>Muud fossiilset kütused – import</td>
<td>0,030</td>
</tr>
<tr>
<td>Bensiin ja diisel</td>
<td>0,044</td>
</tr>
<tr>
<td>Soojusenergia</td>
<td>0,717</td>
</tr>
<tr>
<td>Elektrienergia</td>
<td>0,648</td>
</tr>
<tr>
<td>Muu tooraine, kaubad ja materjal</td>
<td>0,611</td>
</tr>
<tr>
<td>Ehitus</td>
<td>0,661</td>
</tr>
</tbody>
</table>

Tabel 1. Valitud tegevusalade lisandväärtuse koefitsiendid

Koefitsient on seda madalam, mida suurem on eeldavalt impordi osakaal tootmismissendites.
Näiteks maagaasi koefitsient sisaldab ainult Eestis toimuva müügitegevuse ja
ülekandeteenusega seotud kulusid.

Käesolevas analüüs is on mönevõrra kohandatud energiatootmise (elekter, soojus)
toomisprotsessse, arvestades taastuvenergia suurenevat osakaalu ning ka impordi
osakaalu muutust elektromajanduses.

Sisend-väljundraamistiku puuduseks on asjaolu, et see arvestab majanduse
minevikstruktuuriga. Kuna eeldatuke, et struktuurimuutused majanduses on suhteliselt
aeglased, siis koostab Statistikaamet Eestis sisend-väljundtabeli ida viie aasta järel.
Põhjuseks on ka tabeli koostamise keerukus – tabeli kokkupanek võtab aega 3 aastat (nt
Tulemuste kokkuvõte

Lisandväärtuse arvutuse koondtulemused on toodud järgnevas tabelis.

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th>2031</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elekter</td>
<td>686</td>
<td>1 881</td>
<td>2 598</td>
</tr>
<tr>
<td>Soojus</td>
<td>833</td>
<td>880</td>
<td>890</td>
</tr>
<tr>
<td>Biometaan</td>
<td>0,2</td>
<td>141</td>
<td>169</td>
</tr>
<tr>
<td>Vesinik</td>
<td>0</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>KOKKU</td>
<td>1 519</td>
<td>2 922</td>
<td>3 707</td>
</tr>
<tr>
<td>% Eesti lisandväärtusest</td>
<td>6,2%</td>
<td>8,0%</td>
<td>7,5%</td>
</tr>
</tbody>
</table>

Tabel 2. Lisandväärtus valdkondade ja stsenaariumite lõikes, mln €

Numbrid on nominaalsed ehk arvestavad inflatsiooniga. Seda arvestades näiteks soojusenergia tootmise lisandväärtus vürreldes praegusega reaalselt langeb – väheneb ka soojuse tarbijate energiaühikutest.

Reaalväärtustes on lisandväärtus kokku ca 17% kõrgem kui aastal 2021, seda tingituna eelkõige elektritootmise, aga ka vesiniku ja biometaani tootmise kasvust. Energiavaldkonna kasy ületab Eesti majanduskasvu tervikuna ning valdkonna osakaal riigi lisandväärtuses mõnevõrra kasvab.

2. Investeeringud

Metodika

Arvutati uute tootmisvõimsuste investeeringud, st arvesse ei võetud asendusinvesteeringuid. Lisaks energiatootmise investeeringutele arvutati ka hoonete renoveerimise investeeringute summad.

Lähtekohaks olid prognoositud tootmismahud eri tehnoloogiate lõikes – juhul kui tootmismaha kasvas, arvutati selleks vajalik tootmisvõimsus ning ühikuhindade alusel investeeringu vajadus. Investeeringu maksimumi indeksseeriti 2%ga aastas, v.a uutel tehnoloogiatel, kus kasutati öppimisefekti arvestavat -0,5% suurust kasvumäära.

Elektritootmise investeeringute leidmisel arvestati lisaks ühiku maksumustele ka erinevate tehnoloogiate optimaalsete töötundidega (aastas).

2 Kui arvestada näiteks 2% suuruse inflatsiooniga (raha ostujõu vähememisega), siis on üks 2031. aasta euro täna väärt ca 0,82 eurot ning 2040. a oma ca 0,69 eurot.
<table>
<thead>
<tr>
<th>Tehnoloogia</th>
<th>Maksumus (tuh €/MW)</th>
<th>Töötunnid (h aastas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuul - maismaal</td>
<td>1 200</td>
<td>3 329</td>
</tr>
<tr>
<td>Tuul - merel</td>
<td>1 785</td>
<td>4 818</td>
</tr>
<tr>
<td>Päikeseelekter</td>
<td>750</td>
<td>1 000</td>
</tr>
<tr>
<td>PHEJ</td>
<td>1 200</td>
<td>2 400</td>
</tr>
<tr>
<td>Väiketarbijate elektriakud</td>
<td>792</td>
<td>876</td>
</tr>
</tbody>
</table>

Tabel 3. Elektritootmise investeeringute eeldused

Samad eeldused soojuse tootmise investeeringute arvutamiseks on toodud järgnevas tabelis.

<table>
<thead>
<tr>
<th>Suurtootmine</th>
<th>Maksumus (tuh €/MW)</th>
<th>Töötunnid (h aastas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttegaasi katelde ümberehitus</td>
<td>200</td>
<td>5 000</td>
</tr>
<tr>
<td>CHP katlad</td>
<td>700</td>
<td>6 500</td>
</tr>
<tr>
<td>Soojuspumbad</td>
<td>650</td>
<td>5 000</td>
</tr>
<tr>
<td>Kaugjahutus</td>
<td>800</td>
<td>1 100</td>
</tr>
<tr>
<td>Muud - salvestus</td>
<td>1 000</td>
<td>500</td>
</tr>
</tbody>
</table>

Kohalik tootmine

| Soojuspumbad | 900 | 5 000 |

Tabel 4. Sookse tootmise investeeringute eeldused

Kõige suurem investeeringute maht tekkis hoonete renoveerimisest, kus muutujateks olid renoveerimise maht (m²) ja maksumus (€/m²). Ülevaade arvutuste lähtekohtadest on toodud järgnevas tabelis.

<table>
<thead>
<tr>
<th>Maksumus (€/m²)</th>
<th>Renoveerimise maht (mln m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Üksikelamud</td>
<td>400</td>
</tr>
<tr>
<td>Korterelamud</td>
<td>300</td>
</tr>
<tr>
<td>Bürood, majutus</td>
<td>500</td>
</tr>
<tr>
<td>Kaubandus, teenindus, tööstus ja erihooned</td>
<td>250</td>
</tr>
<tr>
<td>Haridus ja tervishoid</td>
<td>1 100</td>
</tr>
<tr>
<td>Laod/transpordihooned</td>
<td>150</td>
</tr>
</tbody>
</table>

Tabel 5. Hoonete rekonstrueerimise investeeringute lähtekohad

Hoonete renoveerimise mahtude ja maksumustest hindamisel võeti võrdlusaluseks TalTechi poolt 2020. aastal läbi viidud uuring „Hoonete rekonstrueerimise pikaajaline strateegia“. Väärtuste indeksseerimisel arvestati 2021 aasta tegeliku ja 2022 aasta prognoositud ehitushindade kasvuga (vastavalt 8% ja 15%). Mudelis jäavad prognoositud renoveerimise mahud mõnevõrra alla TalTechi poolt hinnatud renoveerimise vajadusele aastani 2040, v.a
korterelamute osas. Teatud hoonete kategoories (nt üksikelamud) ei hinnatud TelTechi eesmärkide saavutamiseks vajalikku kasvu realistlikuks.

Biometaani tootmise investeeringud on hinnatud Eesti biometaani tootmise arendajate poolt ning lähtekohaks on 11 miljonit eurot 3 miljoni m³ (ca 28 GWh) aastase tootmismahuga tootmisüksuse kohta. Investeeringu maksumus kasvab eelduse kohaselt 2% aastas. Biometaani tootmisüksuste kasv toimub seni, kuni saavutatakse eeldatav optimaalselt võimalik tootmismaht, s.o 117 miljonit m³ ehk 1090 GWh aastas.

Vesiniku tootmise investeeringu maksumus on arvestuslikult 6,7 miljonit eurot 500 tonni aastase tootmismahuga üksuse kohta. Investeeringu maksumuse muutus ajas arvestab nn õppimiskõveraga (learning curve) ning kasvab seetõttu üldisest hindade kasvust mõnevõrra aeglasmalt. Vesiniku tootmisüksuste arv kasvab vastavalt eeldatavale vesiniku tarbimisele Eestis, mis käesolevas mudelis on ette nähtud ainult transpordis.

Tulemuste kokkuvõte

Investeeringute maksumus on summaarselt toodud praeguses (2021) raha ostujõu väärtuses3 järgmises tabelis.

<table>
<thead>
<tr>
<th></th>
<th>2021-2031</th>
<th>2021-2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elekter</td>
<td>7 181</td>
<td>8 475</td>
</tr>
<tr>
<td>Soojuse tootmine</td>
<td>293</td>
<td>480</td>
</tr>
<tr>
<td>Biometaan</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td>Vesinik</td>
<td>55</td>
<td>99</td>
</tr>
<tr>
<td>ENERGIA TOOTMINE KOKKU</td>
<td>7 880</td>
<td>9 405</td>
</tr>
<tr>
<td>Hoonete renoveerimine</td>
<td>4 891</td>
<td>10 854</td>
</tr>
</tbody>
</table>

Tabel 6. Investeeringud valdkondade ja stsenariumite lõikes, mln € (2021. a hindades)

Hoonete renoveerimise investeeringud moodustavad kuni 2031. aastani 38% investeeringute kogumahust. 2040. aastaks kasvab see osa 54%-ni, kuna energiatootmises on 2031. aastaks suuremad investeeringud (meretuulepargid, salvestid) tehtud.

3 Kuigi üldiselt ehitati mudel üles nominaalsena, on pika perioodi rahaliste väärtuste liitmisel otstarbekas teha tänastes hindades või tänast raha ostujõudu arvestades.
3. Kasvuhoonegaaside arvestus

Metodika

Eraldi on arvutatud nn statistiline heide, mis on aluseks ka riiklikule kasvuhoonegaaside inventuurile ja emissioonidega kauplemise süsteemile (ETS – emission trading system) ning olelusringi ehk elutsükli (LCA – lifecycle assessment) heide. Arvestatud on ainult energia tootmise ja kasutamisega seotud emissioone, st arvestust ei ole tehtud näiteks hoonete renoveerimisega seotud ega ka muude võimalike energiasäästumineetmete emissioonidele.

Arvestus on tehtud süsihappegaasi ekvivalentides (CO₂ eqv) ning peamine alus on tonni CO₂ ekv vastava energiaallika energeetilise väärtuse kohta.

Lisaks arvesse võetud elutsükli (tootmine, transport, põletamine jm) emissioonile võeti LCA arvestuses arvesse ka energia tootmisüksuste (soojusmajandus ja elektritootmine) rajamisega ning sõidukite tootmise ja ka utiliseerimisega seotud emissioonid. Nii lisandus näiteks elektritoomises 10 (maagaasijaamad, elektriakud, pumphüdrojaam) kuni 66 (päikesepargid) tonni CO₂ ekv toodetud GWh elektrienergia kohta.

Transpordis eristati elektri ning sisepõlemismootoriga sõidukid – näiteks sõiduautodel oli 2020. aasta andmete alusel elektrimootoriga sõidukite emissioonitase ca 37% kõrgem ning tulevikus prognoositakse sisepõlemismootoriga autodega seotud emissiooni langust kiiremaaks kui elektrimootoriga autodel. Sõidukite tootmise ja utiliseerimisega seotud emissioon moodustab siiski alla 10% sõidukite koguemissioonist (kuigi see osakaal ajas mõnevõrre kasvab).

Tulemuste kokkuvõte
Tulemuste kokkuvõte (2021, ja 2040. a vürdlus) valdkondade lõikes on toodud järgnevas tabelis.

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th></th>
<th>2040</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistiline</td>
<td>LCA</td>
<td>Statistiline</td>
<td>LCA</td>
</tr>
<tr>
<td>Elekter</td>
<td>4,8</td>
<td>8,9</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Soojus</td>
<td>1,3</td>
<td>7,4</td>
<td>-0,1</td>
<td>2,4</td>
</tr>
<tr>
<td>Transport</td>
<td>2,3</td>
<td>3,3</td>
<td>0,4</td>
<td>1,1</td>
</tr>
<tr>
<td>KOKKU</td>
<td>8,4</td>
<td>19,6</td>
<td>0,3</td>
<td>5,6</td>
</tr>
</tbody>
</table>

Tabel 7. Kasvuhoonegaaside emissioonid aastatel 2021 ja 2040, mln t CO₂ ekv
Tabelist on näha, et statistiline emissioon langeb soojuse tootmises isegi negatiivseks – st soojuse tootmises seotakse mõnevõrra kasvuhoonegaase. See tuleneb asjaolust, et biometaanile on Euroopa Liidu direktiivi⁴ kohaselt arvestatud negatiivne emissioonifaktor.

4. Riigi maksulaekumised

Metoodika

Täiendavalt arvestati maksutuludega lisandväärtsuselt Eesti keskmisest maksukoormusest lähtuvalt. Eelduse kohaselt on üldine maksulaekumine seotud lisandväärtsusega (tööjõumaksud, tarbimismaksud, kasumimaksud) ning lisandväärtsuse muutus toob proportsionaalselt kaasa ka maksulaekumiste muutuse. Eestis on viimase 5 aasta keskmine maksukoormuse suhe sisemajanduse koguprodukti (SKP) olnud suhteliselt stabiilselt 34% ligidal; suhe lisandväärtsusesse, mis on SKP peamine komponent (viimase 10 aasta keskmisena 87% SKPst), oleks ca 39%.

Lisaks peab riik arvestama ka kasvuhoonegaaside kvoodi müügist laekivate tulude (2021. aastal hinnanguliselt üle 200 mln euro) vähenemisega või isegi kadumisega ajas – kuna seda kässeleva töö stsenaariumid eeldatavalt ei mõjuta, siis ei ole kvoomüügi tulu eraldi välja toodud.

Tulemuste kokkuvõte
Tulemuste kokkuvõte aastate ja stsenaariumite lõikes on toodud järgnevas tabelis.

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th>2031</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektriaktsiis</td>
<td>9</td>
<td>51</td>
<td>66</td>
</tr>
<tr>
<td>Elektritootmise keskkonnatasud</td>
<td>53</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Soojuse tootmise maksud ja tasud</td>
<td>22</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Transpordikutuste aktsiis</td>
<td>392</td>
<td>312</td>
<td>178</td>
</tr>
<tr>
<td>Maksud lisandväärtuselt</td>
<td>595</td>
<td>1145</td>
<td>1452</td>
</tr>
<tr>
<td>KOKKU</td>
<td>1 071</td>
<td>1 542</td>
<td>1 697</td>
</tr>
</tbody>
</table>

Tabel 8. Riigi maksutulud ja tasud aastate ning stsenaariumite lõikes, mln €

Eriti oluliselt mõjutab maksulaekumisi transpordikutuste aktsiisi vähememine. Seda kompenseerivad lisandväärtuse maksud ja elektriaktsiis, kuid reaalselt (inflatsiooni arvestades) jäävad energiavaldkonnaga seotud maksulaekumised aastal 2040 siiski monevõrra madalamaks kui praegu.
LISA 2. Sisendid kasvuhoonegaaside ja kütteväärtuste arvutamiseks

<table>
<thead>
<tr>
<th>Kütuseliik</th>
<th>Ühik</th>
<th>Statistiline heide</th>
<th>Olelusring heide, tCO₂/GWh</th>
<th>Alumised kütteväärtused, MWh/ühik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Süsiniku eriheide (q₀)</td>
<td>tCO₂eq / GWh</td>
<td>tCO₂eq / ühik</td>
</tr>
<tr>
<td>Turbaabrikett (niiskussisaldus² ≤20%)</td>
<td>t</td>
<td>28,9</td>
<td>381,2</td>
<td>1,6</td>
</tr>
<tr>
<td>Tükkturvas (niiskussisaldus² ≤40%)</td>
<td>t</td>
<td>28,9</td>
<td>381,2</td>
<td>1,3</td>
</tr>
<tr>
<td>Freesturvas (niiskussisaldus² ≤50%)</td>
<td>t</td>
<td>28,9</td>
<td>381,2</td>
<td>1,1</td>
</tr>
<tr>
<td>Eesti pälevkivi:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolmpõletamisel</td>
<td>t</td>
<td>27,9</td>
<td>367,4</td>
<td>0,9</td>
</tr>
<tr>
<td>Keevkihvpõletamisel</td>
<td>t</td>
<td>26,9</td>
<td>355,3</td>
<td>0,9</td>
</tr>
<tr>
<td>Tahke biomass (puit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Küttepuud, segapuit (NB! ruumimeeter)</td>
<td>000' m³</td>
<td>29,9</td>
<td>394,4</td>
<td>512,7</td>
</tr>
<tr>
<td>Küttepuud, kask</td>
<td>000' m³</td>
<td>29,9</td>
<td>394,4</td>
<td>591,6</td>
</tr>
<tr>
<td>Puiduhake</td>
<td>000' m³</td>
<td>29,9</td>
<td>394,4</td>
<td>315,5</td>
</tr>
<tr>
<td>Halupuit (niiskussisaldus² ≤20%)</td>
<td>t</td>
<td>29,9</td>
<td>394,4</td>
<td>1,6</td>
</tr>
<tr>
<td>Toornafta</td>
<td>t</td>
<td>20,0</td>
<td>263,8</td>
<td>3,1</td>
</tr>
<tr>
<td>Vedelgaas (propaan + butaan; LPG?)</td>
<td>t</td>
<td>17,2</td>
<td>226,9</td>
<td>2,9</td>
</tr>
<tr>
<td>LNG</td>
<td>t</td>
<td>210,0</td>
<td>2,8</td>
<td>339,5</td>
</tr>
<tr>
<td>Bensiin</td>
<td>t</td>
<td>18,9</td>
<td>249,3</td>
<td>3,0</td>
</tr>
<tr>
<td>Diislikütus</td>
<td>t</td>
<td>20,2</td>
<td>266,4</td>
<td>3,1</td>
</tr>
<tr>
<td>Raske kütteõli</td>
<td>t</td>
<td>21,1</td>
<td>278,3</td>
<td>3,0</td>
</tr>
<tr>
<td>Kerge kütteõli</td>
<td>t</td>
<td>19,6</td>
<td>258,5</td>
<td>3,0</td>
</tr>
<tr>
<td>Põlevkiviõli = raske kütteõli</td>
<td>t</td>
<td>21,1</td>
<td>278,3</td>
<td>3,0</td>
</tr>
<tr>
<td>Muud õlid</td>
<td>t</td>
<td>20,0</td>
<td>263,8</td>
<td></td>
</tr>
<tr>
<td>Maagaas (ka biometaan)</td>
<td>000' m³</td>
<td>15,3</td>
<td>201,8</td>
<td>1,9</td>
</tr>
</tbody>
</table>

53
<table>
<thead>
<tr>
<th>Toode</th>
<th>Üksuse määra</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biometaan</td>
<td>000’ m3</td>
<td>-316,8</td>
<td>-2,9</td>
<td>-269,1</td>
<td>9,3</td>
</tr>
<tr>
<td>Biogaas</td>
<td>000’ m3</td>
<td>15,3</td>
<td>201,8</td>
<td>1,2</td>
<td>6,0</td>
</tr>
<tr>
<td>Põlevkivigaas/uttegaas/poolkoksigaas (tahke soojuskandja meetodil)</td>
<td>000’ m3</td>
<td>18,9</td>
<td>248,8</td>
<td>3,0</td>
<td>296,5</td>
</tr>
<tr>
<td>Vesinik</td>
<td>t</td>
<td>32,8</td>
<td>33,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioetanool = biobensiin</td>
<td>t</td>
<td>1,9</td>
<td>303,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodiisel</td>
<td>t</td>
<td>320,4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allikad: Keskkonnaministri 27.12.2016 määrus nr 86 „Välisõhku väljutatava süsinikdioksiidi heite arvustusliku määramise meetodid“;[1]
www.riigiteataja.ee/aktilisa/1061/0201/7008/KKM_m41_Lisa1.pdf
LISA 3. Olulisemad rahvamajanduse näitajad

<table>
<thead>
<tr>
<th>Aasta</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKP jooksevhindades (mln €)</td>
<td>28 215</td>
<td>29 909</td>
<td>31 659</td>
<td>33 106</td>
<td>34 256</td>
<td>35 441</td>
<td>36 644</td>
<td>37 890</td>
<td>39 180</td>
<td>40 516</td>
</tr>
<tr>
<td>Lisandväärtus (mln €)</td>
<td>24 604</td>
<td>26 081</td>
<td>27 606</td>
<td>28 868</td>
<td>29 871</td>
<td>30 905</td>
<td>31 953</td>
<td>33 040</td>
<td>34 165</td>
<td>35 330</td>
</tr>
<tr>
<td>SKP nominaalkasv</td>
<td>6,4%</td>
<td>6,0%</td>
<td>5,8%</td>
<td>4,6%</td>
<td>3,5%</td>
<td>3,5%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
</tr>
<tr>
<td>SKP reaalkasv</td>
<td>4,5%</td>
<td>3,5%</td>
<td>3,0%</td>
<td>2,3%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
</tr>
<tr>
<td>Tootjahinnaindeks</td>
<td>1,7%</td>
<td>2,5%</td>
<td>2,7%</td>
<td>2,2%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>Tarbijahinnaindeks</td>
<td>1,4%</td>
<td>2,2%</td>
<td>2,1%</td>
<td>1,9%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>Keskmise kuupalk (€)</td>
<td>1 428</td>
<td>1 493</td>
<td>1 565</td>
<td>1 626</td>
<td>1 687</td>
<td>1 749</td>
<td>1 815</td>
<td>1 884</td>
<td>1 956</td>
<td>2 031</td>
</tr>
<tr>
<td>Palgakasv</td>
<td>0,4%</td>
<td>4,5%</td>
<td>4,8%</td>
<td>3,9%</td>
<td>3,7%</td>
<td>3,7%</td>
<td>3,8%</td>
<td>3,8%</td>
<td>3,8%</td>
<td>3,9%</td>
</tr>
<tr>
<td>Rahvaarv - põhiprogoos (tuh)</td>
<td>1 319</td>
<td>1 325</td>
<td>1 324</td>
<td>1 323</td>
<td>1 323</td>
<td>1 322</td>
<td>1 321</td>
<td>1 321</td>
<td>1 320</td>
<td>1 318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2031</th>
<th>2032</th>
<th>2033</th>
<th>2034</th>
<th>2035</th>
<th>2036</th>
<th>2037</th>
<th>2038</th>
<th>2039</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKP jooksevhindades (mln €)</td>
<td>41 923</td>
<td>43 395</td>
<td>44 936</td>
<td>46 526</td>
<td>48 125</td>
<td>49 760</td>
<td>51 474</td>
<td>53 246</td>
<td>55 063</td>
<td>56 941</td>
</tr>
<tr>
<td>Lisandväärtus (mln €)</td>
<td>36 557</td>
<td>37 841</td>
<td>39 184</td>
<td>40 571</td>
<td>41 965</td>
<td>43 391</td>
<td>44 885</td>
<td>46 431</td>
<td>48 015</td>
<td>49 653</td>
</tr>
<tr>
<td>SKP nominaalkasv</td>
<td>3,5%</td>
<td>3,5%</td>
<td>3,6%</td>
<td>3,5%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
<td>3,4%</td>
</tr>
<tr>
<td>SKP reaalkasv</td>
<td>1,4%</td>
<td>1,5%</td>
<td>1,5%</td>
<td>1,5%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
<td>1,4%</td>
</tr>
<tr>
<td>Tootjahinnaindeks</td>
<td>2,0%</td>
</tr>
<tr>
<td>Tarbijahinnaindeks</td>
<td>2,0%</td>
</tr>
<tr>
<td>Keskmise kuupalk (€)</td>
<td>2 110</td>
<td>2 193</td>
<td>2 279</td>
<td>2 370</td>
<td>2 464</td>
<td>2 564</td>
<td>2 668</td>
<td>2 775</td>
<td>2 886</td>
<td>3 000</td>
</tr>
<tr>
<td>Palgakasv</td>
<td>3,9%</td>
<td>3,9%</td>
<td>3,9%</td>
<td>4,0%</td>
<td>4,0%</td>
<td>4,0%</td>
<td>4,1%</td>
<td>4,0%</td>
<td>4,0%</td>
<td>4,0%</td>
</tr>
<tr>
<td>Rahvaarv - põhiprogoos</td>
<td>1 312</td>
<td>1 310</td>
<td>1 309</td>
<td>1 307</td>
<td>1 305</td>
<td>1 303</td>
<td>1 301</td>
<td>1 300</td>
<td>1 298</td>
<td>1 297</td>
</tr>
</tbody>
</table>

Allikad: Rahandusministeerium, Statistikaamet.
LISA 4. Fantoomliitumiste selgitused

Käesoleval hetkel on liitumistaotlustega spekuleerijad esitanud taotlusi tuhandetes megavattides päikeseparkidele, salvestusjaamadele ning päike-salvestus hüürid jaamadele. Selle tulemusel on tekinud olukord, kus elektrivõrk on mahu mõttes teoreetiliselt „täis“ ning iga järgneva võimaliku liitumistaotluse menetluse tulemiks on järelus, et liitumiseks on vajalik teha ulatuslikke võrgutugevdustid ning seea on järgnevate liitumist soovivat isikute liitumispakkumised ebarealistlikult kõrget hinnastatud. See omakorda välistab ees igasuguse majandusliku tasuvuse ning seea ka taastuvenergia arendamise võimalikkuse. Võrgutugevduste tegemine iseenesest antud olukorras pole tehniliselt üldse vajalik, kuna tegelikkuses nn fantoomliitumisi ei kasutata, sest võrgus on kasutamata mahtu ulatuslikult. Olukord on tekinud, kuna:

a. Elering AS tõlgendab elektri liitumise tüüpimisest tehnoloogianeutraalselt ehh on võimalik tootmisseadmega seotud primaarenergiaallikat vahetada pärast liitumispakkumise saamist.

c. Liitumismenetlusele eelnnev protsess on nõrga kontrolliga – paljud projektid ei ole majanduslikult teostatavad (on ebarealistlikud) ja/või ei oma liitumistaotluse esitaja vaidetava arenduse teostamiseks piisavalt maad. Sellises olukorras on ilme, et eesmärk on kas liitunud ettevõtja hiljem võõrandada koos liitumisega nt. reaalsele tuulearendajale või lootuses hiljem vahetada tehnoloogiat saavutamaks eelis arendajate ees, kelle liitumistingimustega taotluse esitamise eeldus sõltub mitu aastat kestvatest planeeringumenetlusest, nt tuulepargid;

d. Liitumise õigus on igavene ehk pole mingit ajalist limiti, millal liitumist ka tootmistegevuseks kasutama kavatsetakse hakata ning seeläbi hoida võrguressurssi lõpetult kinni.

Eelnnev olukord on toonud kaasa omakorda järgneva:

I. Igasugune järgnev taastuvenergeetika arendamine on paljudes potentsiaalsetes piirkondades perspektiivitu, sest elektrivõrguga liitumine on ebarealistlikult ning arendamist välistavalt kallis;
II. Tekib täiendav arendamist välistav kriteerium ka tuulepargi arendajatele, kuigi arendamiseks sobivaid piirkondi on niigi vähe.

III. Liitumise olemasolu kasutatakse ära veenmaks maaomanikke enda kinnistuid kasutusse andma tuuleenergia arendamiseks, kuna teised arendajad piirkonnas konkurentsile ei tekita;

IV. Planeerimismenetlused muutuvad perspektiivitüks – pole mõtet planeerimismenetrust lõpuni viia, kui on teada, et liitumine osutub tõenäoliselt äärmiselt kulukaks (ning esineb oht nende lõpetamiseks). Isegi kui fantoomliitumised ära kaovad, võib see lükata ka planeeringute kehtestamist edasi – planeerimismenetrused kestavad 4-6 aastat.

V. Tõenäoliselt tekitavad erisused ka vähempakkumisel, sest liitumiskulud tõstavad ka reaalse arendajate ning muude tehnoloogiate vähempakkumiste hindasid kõrgemaks (arvestuslik omahind on liitumise kallidusest kõrgem);

VI. Tekib nende tehnoloogiate üleküllus (päikeseenergia), mis ei lahenda energiapuuduse probleeme vaid tekitab neid juurde – tootmine on sesoonne ning on ainult valgel ajal – ning energiatarvimise kõrgperioodil (sügisel ja eriti talvel) on tootmine vähene.

VII. Vabat liitumisvõimsused tuuleenergeetika ja hübridparkide arendamiseks on piirkondades, kus on ranged keskkonnaüritused.